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ABSTRACT
Ever since the introduction of Pythagorean fuzzy (PF) sets, many scholars have focused on solvingmulticriteria decision-making
(MCDM) problems with PF information. The technique for order preference by similarity to ideal solutions (TOPSIS) is a well-
known and effective method for MCDM problems. The objective of this study is to extend the TOPSIS to tackle MCDM prob-
lems under the PF environment. In this study, we develop a novel distance measure that considers the length, the angle, and the
greater space, which reflect the properties of PF sets. Then, we apply the proposed distance measure in PF-TOPSIS to calculate
the distances from the PF positive ideal solution and the PF negative ideal solution. Finally, we take the evaluation of emerg-
ing technology commercialization as an MCDM problem to illustrate the proposed approaches, and we then compare these
approaches to demonstrate the scalar type PF-TOPSIS is the most feasible and effective approach in practice.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Multicriteria decision-making (MCDM) refers to the identification
of the optimal alternative or the determination of the ranking order
of all alternatives. Due to the inherent vagueness of decision mak-
ers’ preferences in practice, Zadeh [1] introduced the concept of
fuzzy sets for dealing with MCDM problems, which use the mem-
bership degree to denote the alternative satisfies the criterion. How-
ever, in practice, a decision maker usually points out the degree to
which the alternative fails to satisfy the criterion. Atanassov [2] ini-
tially developed the intuitionistic fuzzy (IF) sets, which utilize the
membership degree and the nonmembership degree and allow the
sum of the two degrees to be equal to or less than one. However,
we may encounter the problem that the sum of the two degrees is
greater than one in a real decision process. To overcome this restric-
tion, Yager [3,4] introduced the Pythagorean fuzzy (PF) sets, with
the condition that the sum of the squares of themembership degree
and the nonmembership degree is equal to or less than one. PF sets
outperform IF sets and can deal with more ambiguous and uncer-
tain information in MCDM practice.

Ever since the introduction of PF sets, many scholars have focused
on solvingMCDMproblems under the PF environment. Zhang and

*Corresponding author. Email: tychen@mail.cgu.edu.tw

Xu [5], Zeng et al. [6], Gary [7], Biswas and Sarkar [8], Yu et al.
[9], and Akram et al. [10] extended the technique for order pref-
erence by similarity to ideal solutions (TOPSIS) method with PF
information to solve MCDM problems. Ren et al. [11] and Biswas
and Sarkar [12] proposed the PF-TODIM (acronym in Portuguese
for interactive MCDM) approach for MCDM problems. Zhang
[13] developed the Pythagorean fuzzy qualitative flexible multi-
ple criteria method (PF-QUALIFLEX) for dealing with hierarchical
MCDM problems. Chen [14], Gul et al. [15], and Liang et al. [16]
proposed the PF-Vise Kriterijumska Optimizacija I Kompromisno
Resenje (VIKOR)method for dealing withMCDA problems.Wang
and Chen [17] developed an effective assignment-based method
using correlation-based precedence indices for MCDM problems
within the PF uncertain environment. Haktanir andKahraman [18]
proposed the interval-valued Pythagorean fuzzy quality function
development (IVPF-QFD) method for handling solar photovoltaic
technology problems. Liu et al. [19] integrated QFD and QUAL-
IFLEX to solve the robot selection problem under the PF environ-
ment. Yang et al. [20] developed an IVPF Frank power weighted
average operator-based technique to deal with multiple attribute
group decision-making problems.

TOPSIS [21] is a well-known and widely accepted method for
MCDM problems, which follows the strategy of selecting the
solution that has the shortest distance from the positive ideal
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solution (PIS) and the farthest distance from the negative ideal solu-
tion (NIS). Because TOPSIS is a simple yet effective approach for
MCDM problems, researchers have applied TOPSIS for MCDM
problems within the PF environment. Zhang and Xu [5] extended
TOPSIS with PF information based on score function and a score-
based ranking. Zeng et al. [6] introduced the PF ordered weighted
averaging weighted average distance into TOPSIS by integrating the
subjective information and the attitudinal characteristics of deci-
sion makers’ preferences. Gary [7] introduced an improved score
function into TOPSIS with IVPF information.Wan et al. [22] devel-
oped a novel rankingmethod according to the arc-length-based rel-
ative closeness (RC) degree, which was inspired by the strategy of
TOPSIS. Onar et al. [8] used PF-TOPSIS to evaluate cloud service
providers. Yu et al. [9] extended the TOPSISmethod via the integra-
tion of the distance and the similarity to evaluate suppliers’ perfor-
mance using IVPF information. Akram et al. [10] extended TOPSIS
to address group decision-making problems in the PF scenario.

The distance measure is essential in PF-TOPSIS due to the fun-
damental TOPSIS strategy of considering the distances to both
the Pythagorean fuzzy positive ideal solution (PFPIS) and the
Pythagorean fuzzy negative ideal solution (PFNIS). Distance mea-
sure between fuzzy sets is an important means to quantify the
degree of difference in fuzzymathematics. A large number of schol-
ars have presented various distance measurement formulas from
different viewpoints [23–27]. Li et al. [26,27] proposed the diver-
gence measure based on dissimilarity function and fuzzy equiva-
lence. Szmidt and Kacprzyk [28] considered three parameters that
reflects the properties of IF sets and extended distance measures to
IF environments. Grzegorzewsk [29] developed the distance mea-
sure for IF sets based on the Hausdorff metric. Montes et al. [30]
defined the divergence tomeasure the distance between two IF sets.
He et al. [31] defined the IF dissimilarity function based on quater-
nary functions.

Ever since the appearance of the PF sets, some researchers have
extended the distance measure of IF sets to PF sets. Zhang and
Xu [5] considered three parameters of PFSs, namely, the member-
ship degree, the nonmembership degree, and the hesitation degree,
while ignoring the direction of commitment, the strength of com-
mitment, and the radian. Li and Zeng [32] considered four basic
parameters (the membership degree, the nonmembership degree,
the strength of commitment, and the direction of commitment) of
PF sets in the distance measure equation. Zeng et al. [33] incorpo-
rated a parameter, namely, the hesitation degree, into Li and Zeng’s
method [32]; both approaches ignore the angle and the procedure is
directly extended from the IF sets but does not consider the greater
space of the PF sets. Wang et al. [34] introduced a distance mea-
sure that is based on the length distance and the angular distance
in a bidirectional projection model under the PF environment. Yu
et al. [35] proposed a new distance formula that employs induced
orderedweighted averaging (IOWA)with PF information; however,
this basic distance formula considers only three parameters, which
are the same as the parameters that are considered in the method of
Zhang and Xu [5]. Peng and Li [36] proposed a new distance mea-
sure for IVPF sets that has two parameters (the membership degree
and the nonmembership degree) for resolving the counterintuitive
situation.

Although scholars have focused on distance measures for PF
sets, two main difficulties remain: failure to consider the unique
parameters and maintenance of the greater space of PF sets. Zhang

and Xu [5] considered the greater space of PF sets utilizing the sum
of squared deviations of the membership degree, nonmembership
degree, and hesitation degree, but they ignored the strength of com-
mitment, the direction of commitment, and the radian. This lim-
itation resulted in failure to satisfy the fundamental properties of
PF sets, which obtained unreasonable results. Li and Zeng [32] and
Zeng et al. [33] considered the direction of commitment and the
strength of commitment, but the procedure of the distance formulas
simply utilized the sum of deviations of the corresponding param-
eters. This difficulty resulted in failure to ensure the greater space
because the maximum distance of PF sets couldn’t arrive to one.
Hence, the motivation of this paper is to propose a novel distance
measure to overcome the difficulties of the existing distance mea-
sures for PF sets, ensure the greater space of the PF sets, consider
all the related parameters that reflects the unique properties of PF
sets, and satisfy the basic properties of distance measure.

The purpose of this paper is to propose a novel distance measure-
ment method that considers the length distance, the angular dis-
tance, and the greater space, which is applied in PF-TOPSIS for
MCDM problems. We first define a novel distance formula that
resolves these limitations by considering the membership degree,
the nonmembership degree, and the strength of commitment as
the parameters for the length distance measure; by considering the
direction of commitment and the radian as the parameters for the
angular distance measure; and by using the square deviations of
the membership degree, the nonmembership degree, and the
strength of commitment, the deviation of the direction of commit-
ment and the sin value of the angle to maintain the greater space of
the PF sets. Next, we propose the PF-TOPSIS approach for MCDM
problems, in which we utilize four approaches to identify the PFPIS
and the PFNIS: the first is the classical type that is utilized by the
union and intersection operators; the second is the fixed type that is
utilized by the fixed extremum; the third is the scored type that is
utilized by the score function; the fourth is the scalar type that is uti-
lized by scalar function. Then, we use the proposed distance mea-
surementmethod to calculate the distances of each alternative from
the PFPIS and the PFNIS to fully reflect the properties of the PF
sets andwe employ both the relative closeness index and the revised
closeness index to obtain the ranking order and to identify the opti-
mal solution. Moreover, as a practical MCDM problem, this paper
considers the evaluation of emerging technology commercializa-
tion to evaluate the proposed approaches and to conduct a compar-
ative analysis among these approaches, the results of which demon-
strate that the scalar type approach is the most feasible, effective,
and credible approach forMCDMproblems in practice. Finally, this
paper proposes directions for future research.

The main contributions of this study relative to the existing dis-
tance measurement method and the existing PF-TOPSIS method
are summarized as follows:

1. A novel distancemeasurement method for PF sets is proposed,
the parameters of which reflect the length distance and angular
distance based on the characteristics of PF sets and the proce-
dure of which ensures that the greater space of PF sets is main-
tained. Therefore, the proposed distancemeasurementmethod
measures the distance between two PF sets more accurately.

2. A scalar function is used to determine the PFPIS and the PFNIS
in the PF-TOPSIS approach. Due to the unique properties of
PF sets, the scalar function compares the magnitudes more
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accurately according to Zeng et al. [33]. However, the scalar
function has yet to be applied in PF-TOPSIS. In this paper, we
utilize the scalar function as an approach for comparing the
magnitudes of PF sets for the determination of the PFPIS and
the PFNIS, which may yield more accurate results.

3. The proposed distance measurement method is applied in PF-
TOPSIS to calculate the distances from the PFPIS and the
PFNIS. Due to the effectiveness of the proposed distance mea-
surement method, which is based on the properties of the PF
sets, it can calculate the distances from the PFPIS and the
PFNIS more precisely.

4. Substantial improvement has been realized by the PF-TOPSIS
methodology in solvingMCDMproblems. This paper demon-
strates the scalar type approach to determine the PFPIS and the
PFNIS and utilizes the novel distance measurement method to
calculate the distances from the PFPIS and the PFNIS, both of
which reflect the properties and characteristics of PF sets, and
tomake the scalar type approachmore effective and practicable
for solving MCDM problems compared to the classical type,
fixed type, and the scored type approaches.

The remainder of this paper is organized as follows: In Section 2,
we briefly recall the basic concepts of PF sets, PF numbers, opera-
tions, and magnitude comparison methods. In Section 3, we com-
pare various existing distance measurement methods and propose
a novel distance measurement method that considers five param-
eters of PF sets. In Section 4, we propose PF-TOPSIS for solving
MCDM problems with PF information. In Section 5, we consider
the “evaluation of emerging technology commercialization” as an
illustrative example on which to demonstrate the proposed method
and conduct a comparative analysis. In Section 6, we present the
conclusions of this study and discuss future work.

2. PRELIMINARIES

In this section, we recall basic concepts, properties, operations, and
magnitude comparison methods of PF sets and PF numbers.

Definition 1. [5] Let X be a set of finite universal sets. A PF set is
an object that has the following form:

p = {< x, P
(
𝜇p (x) , 𝜈p (x)

)
| x ∈ X >} , (1)

where the function 𝜇p (x) ∶ X → [0, 1] denotes the membership
degree of element x ∈ X to set p and the function 𝜈p (x) ∶ X → [0, 1]
denotes the nonmembership degree of element x ∈ X to set p. For
any PF set p and x ∈ X,

0 ≤
(
𝜇p (x)

)2 + (
𝜈p (x)

)2 ≤ 1. (2)

The function hp (x) denotes the hesitation degree of element x ∈ X
to set p. For any PF set p and x ∈ X,

hp (x) = √1 –
(
𝜇p (x)

)2 – (𝜈p (x))2. (3)

For convenience, Zhang and Xu [5] defined the Pythagorean
fuzzy number (PFN) as follows: A PF set P

(
𝜇p (x) , 𝜈p (x)

)
can

be expressed as a PFN P
(
𝜇p, 𝜈p

)
, where 𝜇p, 𝜈p ∈ [0, 1], hp =(

1 –
(
𝜇p
)2 – (𝜈p)2)1/2, and 0 ≤ (

𝜇p
)2 + (

𝜈p
)2 ≤ 1.

Yager [3] proposed another PFN formulation, namely, p =
P(rp, dp), where rp defines the strength of commitment and rp ∈
[0, 1]. The larger the value of rp, the stronger the commitment and
the lower the uncertainty of the commitment. dp denotes the direc-
tion of commitment. rp and dp are associatedwith a pair ofmember-
ship grades, namely, 𝜇p and 𝜈p, which correspond to the support for
and against the membership; 𝜇p = rp cos

(
𝜃p
)
and 𝜈p = rp sin

(
𝜃p
)
,

where 𝜃p denotes the radian, which is in the range of [0, 𝜋/2] and
defined as 𝜃p =

(
1 – dp

)
(𝜋/2). Alternatively, P

(
rp, dp

)
can be

expressed in polar coordinates
(
rp, 𝜃p

)
. The relationship between

dp and 𝜃p can be expressed as dp = 1 – 2
(
𝜃p
)
/𝜋.

The parameters of PFNs include 𝜇p, 𝜈p, hp, rp, dp, and 𝜃p, which are
based on the concepts and properties of PFNs. From 𝜇p, 𝜈p ∈ [0, 1],
it follows that

(
𝜇p
)2 ≤ 𝜇p,

(
𝜈p
)2 ≤ 𝜈p; hence, a PFN has a larger

membership grade range compared to an IF number.

Example 1. Let p = P (0.8, 0.3) be a PFN, then six parameters of
the PFN p are calculated in accordance with aforementioned def-
inition as below, and the graphical representation is presented in
Fig. 1. Here, 𝜇p = 0.8, 𝜈p = 0.3, hp = (1 – 0.82 – 0.32)1/2 = 0.5196,
rp =

(
0.82 + 0.32

)1/2 = 0.8544, 𝜃p = arctan (0.3/0.8) = 0.3588,
and dp = 1 – 2 × 0.3588/𝜋 = 0.7716.

Definition 2. [3] Let p1 = P
(
𝜇p1, 𝜈p1

)
, p2 = P

(
𝜇p2, 𝜈p2

)
, and p =

P
(
𝜇p, 𝜈p

)
be three PFNs. The basic operations (the union operator,

the intersection operator, and the complement operator) on PFNs
can be expressed as follows:

i. p1 ∪ p2 = P
(
max {𝜇p1, 𝜇p2} , min {𝜈p1, 𝜈p2}

)
.

ii. p1 ∩ p2 = P
(
min {𝜇p1, 𝜇p2} , max {𝜈p1, 𝜈p2}

)
.

iii. pc = P
(
𝜈p, 𝜇p

)
.

Zeng et al. [33] further proposed the following operation
with respect to dp between two PFNs:

iv. |dp1 – d c
p2 | = |d c

p1 – dp2|.

Example 2. Let p1 = P (0.8, 0.3) , p2 = P (0.7, 0.2) be two PFNs.
According to Definition 2, we have:

Figure 1 Graphical representation of the
parameters of a Pythagorean fuzzy
number (PFN).
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p1∪p2 = P (max {0.8, 0.7} , min {0.3, 0.2}) = P (0.8, 0.2) , p1∩p2 =
P (min {0.8, 0.7} , max {0.3, 0.2}) = P (0.7, 0.3) , pc1 = P (0.3, 0.8) ,
pc2 = P (0.2, 0.7) . ||dp1 – d c

p2
|| = |0.7716 – 0.1772| = 0.5944, and

|d c
p1 – dp2| = |0.2284 – 0.8228| = 0.5944, then |dp1 – d c

p2 | = |d c
p1 –

dp2|.

After the inception of PF sets and PFNs, themagnitude comparison
of PFNs attracted substantial attention from scholars.

Definition 3. [5] Let p = P
(
𝜇p, 𝜈p

)
be a PFN. The score function

of p is defined as follows:

s
(
p
)
=
(
𝜇p
)2 – (𝜈p)2 , (4)

where s
(
p
)
∈ [–1, 1].

According to Peng and Yang [37], the score function was not suf-
ficiently effective if the same values of the score function occurred
in different PFNs. Then, they developed the accuracy function for
improving the effectiveness of themagnitude comparison for PFNs.

Definition 4. [37] Let p = P
(
𝜇p, 𝜈p

)
be a PFN. The accuracy func-

tion of p is defined as follows:

a
(
p
)
=
(
𝜇p
)2 + (

𝜈p
)2 , (5)

where a
(
p
)
∈ [0, 1].

Zhang [13] utilized the closeness index to compare the magnitudes
between two PFNs.

Definition 5. [13] Let p = P
(
𝜇p, 𝜈p

)
be a PFN. The closeness index

of p is calculated as follows:

c
(
p
)
=

1 –
(
𝜈p
)2

2 –
(
𝜇p
)2 – (𝜈p)2 , (6)

where c
(
p
)
∈ [0, 1].

Yager [3] utilized the scalar function to compare the magnitudes of
PFNs, which considers parameters rp, dp, and 𝜃p.

Definition 6. [3] Let p = P
(
rp, dp

)
be a PFN. The scalar function

of p is defined as follows:

V
(
p
)
= 1
2 + rp

(
dp –

1
2
)
= 1
2 + rp

(
1
2 –

2𝜃p
𝜋

)
. (7)

Example 3. Let p1 = P (0.8, 0.3) , p2 = P (0.7, 0.2) be two PFNs.
According to Definitions 3–6, we have the magnitude comparison
results between p1 and p2, as shown in Table 1.

When we employ the score function in Eq. (5) and the closeness
index in Eq. (7), we can obtain p1 > p2. When we employ the scalar

Table 1 Magnitude comparison results between two PFNs.

p1 p2 Comparison Results

s
(
p
)

0.5500 0.4500 p1 > p2a
(
p
)

0.8747 0.8670
c
(
p
)

0.7165 0.6531 p1 > p2
V
(
p
)

0.7321 0.7350 p1 < p2
PFN, Pythagorean fuzzy number.

function inEq. (7), we can obtain p1 < p2. The result from the scalar
function is inconsistent with the results from the score function and
the closeness index. Since the scalar function takes the parameters
of the direction of the commitment and the angular degree into
consideration, it can reflect the unique characteristics of the PFNs,
while the other three methods ignore these important parameters.
Therefore, the comparison results by scalar functions are more rea-
sonable than the results from score functions, accuracy functions,
and closeness indices.

3. NOVEL DISTANCE MEASUREMENT
METHOD FOR PFNs

In this section, we analyze several existing distance measurement
methods and identify their limitations. Then, we propose a novel
distance measurement method that reflects the properties of PFNs.

3.1. Limitations of the Existing Distance
Measurement Methods for PFNs

Distance measurement is essential for fuzzy sets and has received
extensive attention in the past decades. For PFNs, scholars have
proposed various distance measurement methods, which are based
on three main distances: the Hamming distance, the Euclidean dis-
tance, and the generalized distance.

Zhang and Xu [5] presented the Hamming distance measurement
method for PFNs, which considers 𝜇p, 𝜈p, and hp.

Definition 7. [5] Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. The

normalized Hamming distance measure between p1 and p2 can be
defined as follows:

DZH
(
p1, p2

)
= 1
2
(
||
(
𝜇p1

)2 – (𝜇p2)2|| + ||
(
vp1

)2 – (vp2)2||
+ ||

(
hp1

)2 – (hp2)2||) .

(8)

The parameters of Zhang and Xu’s distance measurement formula
are directly extended from the normalizedHamming distancemea-
sure of IF numbers [36]. Only three parameters that reflect the
properties of IF numbers are considered; the unique characteristics
of PFNs, such as the direction of commitment, the strength of com-
mitment and the radian, are ignored.

Li and Zeng [32] proposed a new distance measurement equation
that includes four parameters, namely, 𝜇p, 𝜈p, rp, dp, of PFNs and
overcomes the main limitation of Zhang and Xu’s method [5].

Definition 8. [32] Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. The

normalized Hamming distance measure, the normalized Euclidean
distancemeasure, and the normalized generalized distancemeasure
between p1 and p2 can be defined, respectively, as：

DLH
(
p1, p2

)
= 1

4
(||𝜇p1 – 𝜇p2|| + ||𝜈p1 – 𝜈p2||

+ ||rp1 – rp2|| + ||dp1 – dp2||
)
,

(9)

DLE
(
p1, p2

)
= [14

((
𝜇p1 – 𝜇p2

)2 + (
𝜈p1 – 𝜈p2

)2
+

(
rp1 – rp2

)2 + (
dp1 – dp2

)2)]1/2 ,
(10)

Pdf_Folio:958



F. Zhou and T. Y. Chen / International Journal of Computational Intelligence Systems 12(2) 955–969 959

DLG
(
p1, p2

)
= [14

(
|𝜇p1 – 𝜇p2|𝜆 + |𝜈p1 – 𝜈p2|𝜆

+ |rp1 – rp2|𝜆 + |dp1 – dp2|𝜆
)
]
1/𝜆

,

(11)

where 𝜆 ≥ 1.
Zeng et al. [33] incorporated the hesitation degree into the distance
measurement equation that is based on Li and Zeng’s method [32].

Definition 9. [33] Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. The

normalized Hamming distance measure, the normalized Euclidean
distancemeasure, and the normalized generalized distancemeasure
between p1 and p2 are defined respectively as follows:

D′
ZH

(
p1, p2

)
= 1

5
(||𝜇p1 – 𝜇p2|| + ||𝜈p1 – 𝜈p2|| + |hp1 – hp2|

+ ||rp1 – rp2|| + ||dp1 – dp2||
)
,

(12)

D′
ZH

(
p1, p2

)
= [15

((
𝜇p1 – 𝜇p2

)2 + (
𝜈p1 – 𝜈p2

)2 + (
hp1 – hp2

)2
+
(
rp1 – rp2

)2 + (
dp1 – dp2

)2)]1/2 ,
(13)

D′
ZH

(
p1, p2

)
= [15

(
|𝜇p1 – 𝜇p2|𝜆 + |𝜈p1 – 𝜈p2|𝜆 + ||hp1 – hp2||

𝜆

+ |rp1 – rp2|𝜆 + |dp1 – dp2|𝜆
)
]
1/𝜆

.

(14)

where 𝜆 ≥ 1.
Example 4. Let p1 = P (0.8, 0.3) and p2 = P (0.7, 0.2) be two PFNs.
According to Definitions 7–9, the computed distances between p1
and p2 are shown as follows: DZH

(
p1, p2

)
= 0.2, DLH(p1, p2) =

0.1043, DLE
(
p1, p2

)
= 0.1120, DLG

(
p1, p2

)
= 0.0364 (𝜆 = 3),

D′
ZH

(
p1, p2

)
= 0.1087,D′

ZE
(
p1, p2

)
= 0.1150, andD′

ZG
(
p1, p2

)
=

0.1204 (𝜆 = 3). For instance,

DZH
(
p1, p2

)
= 0.5 ×

(||0.82 – 0.72|| + ||0.32 – 0.22||

+ ||0.522 – 0.692||
)
= 0.2,

DLE
(
p1, p2

)
=

(
0.25 ×

(
(0.8 – 0.7)2 + (0.3 – 0.2)2

+ (0.85 – 0.73)2 + (0.77 – 0.82)2
))1/2

= 0.1120,

and

D′
ZH

(
p1, p2

)
=

(
0.2 ×

(
|0.8 – 0.7|3 + |0.3 – 0.2|3 + |0.52 – 0.69|3

+ |0.85 – 0.73|3 + |0.77 – 0.82|3
))1/3

= 01204.

We identify several limitations in Li and Zeng’ method [32] and
Zeng et al.’s method [33]: First, both distance measurement meth-
ods ignore the radian. According to the properties of PFNs thatwere
analyzed by Chen [38], the angle 𝜃p in degrees plays an important

role in the magnitude comparison, which determines the radians
and, thus, influences the distance between two PFNs.

Second, the procedures of both distance measurement methods
were simply extended from the distance measure of IF numbers
[39], which employed the absolute deviations of the parameters. In
line with the properties of the PFNs, the space of PFNs is larger than
the space of IF numbers with the condition that

(
𝜇p
)2+ (

𝜈p
)2 ≤ 1.

To ensure the specified scope, we should utilize the squared val-
ues of the 𝜇p, 𝜈p, hp, and rp to specify their relationships. Hence,
aforementioned formulas ignored the greater space of PFNs, which
couldn’t precisely reflect the characteristics of the PFNs.

Third, the distance measure formulas from Li and Zeng’s [32] and
Zeng et al. [33] didn’t satisfy the basic properties of distance mea-
sure. An effective distance measurement formula of PFNs should
satisfy the properties that the distance is in the range of [0,1]; how-
ever, the maximum distance values of Li and Zeng’s [32] and Zeng
et al.’s [33] formulas don’t arrive to one. These limitations will be
demonstrated in details in the subsequent comparative analysis of
the distance measures for PFNs using specific cases.

3.2. Novel Distance Measurement Method
for PFNs

To overcome the restrictions of existing distance measurement
methods for PFNs, we present a novel distance measurement
method that considers five parameters that represent the character-
istics of PFNs and the procedure reflects the properties of PFNs.

In the novel distancemeasurementmethod, we take the parameters
𝜇p, 𝜈p, rp, dp, 𝜃p into the equation, but eliminate the parameter hp.

From
(
hp
)2 = 1 –

(
𝜇p
)2 – (𝜈p)2, (rp)2 = (

𝜇p
)2 + (

𝜈p
)2, it follows

that ||
(
hp1

)2 – (hp2)2|| = ||
(
1 –

(
𝜇p1

)2 – (𝜈p1)2) –
(
1 –

(
𝜇p2

)2 –(
vp2

)2)|| = |
((
𝜇p1

)2 + (
𝜈p1

)2) –
((
𝜇p2

)2 + (
𝜈p2

)2)||, and
||
(
rp1

)2 – (rp2)2|| = |
((
𝜇p1

)2 + (
𝜈p1

)2) –
((
𝜇p2

)2 + (
𝜈p2

)2) |.

Thus, ||
(
hp1

)2 – (hp2)2|| = ||
(
rp1

)2 – (rp2)2||. Therefore,
||
(
hp1

)2 – (hp2)2|| plays the same role as ||
(
rp1

)2 – (rp2)2|| in the
distance measure of PFNs. We only incorporate one of them into
the distance measurement formula under the PF environment.
In this paper, we select parameter rp in the proposed distance
measurement method for PFNs.

We use sin
(
𝜃p
)
to represent the influence of the angle on the

distance of PFNs. According to the properties of PFNs, the dis-
tance between two PFNs is influenced by the angle 𝜃p. Since
𝜃p ∈ [0, 𝜋/2], sin

(
𝜃p
)
and cos

(
𝜃p
)
are strictly monotone, where

sin
(
𝜃p
)
, cos

(
𝜃p
)
∈ [0, 1]. They have the same properties in the

distance measure.

The proposed distance measurement method for PFNs is presented
below.

Definition 10. Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. The

parameters of the PFNs are 𝜇p, 𝜈p, rp, dp, 𝜃p. The normalizedHam-
ming distance measure between p1 and p2 complies with the fol-
lowing rule:Pdf_Folio:959



960 F. Zhou and T. Y. Chen / International Journal of Computational Intelligence Systems 12(2) 955–969

D
(
p1, p2

)
= 1
4
(
|
(
𝜇p1

)2 – (𝜇p2)2 | + |
(
𝜈p1

)2
–
(
𝜈p2

)2 | + |
(
rp1

)2 – (rp2)2 | + |dp1 – dp2|

+| sin
(
𝜃p1

)
– sin

(
𝜃p2

)
|
)
.

(15)

Example 5. Let p1 = P(0.8, 0.3), p2 = P(0.7, 0.2) be two PFNs.
According to Definition 10, the normalized Hamming distance
between p1 and p2 is calculated as below:

D
(
p1, p2

)
= 0.25 ×

(||0.82 – 0.72|| + ||0.32 – 0.22|| + ||0.852 – 0.732||
+ |0.77 – 0.82| + |sin (0.36) – sin (0.28)|) = 0.1319.

Theorem 1. Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. Then, 0 ≤

D
(
p1, p2

)
≤ 1.

Proof：It follows from 𝜇p1, 𝜇p2, 𝜈p1, 𝜈p2 ∈ [0, 1], 𝜃p1, 𝜃p2 ∈
[0, 𝜋/2], 0 ≤

(
𝜇p1

)2 + (
𝜈p1

)2 ≤ 1, 0 ≤
(
𝜇p2

)2 + (
𝜈p2

)2 ≤ 1,(
rp1

)2 = (
𝜇p1

)2 + (
𝜈p1

)2, (rp2)2 = (
𝜇p2

)2 + (
𝜈p2

)2, ||dp1 – dp2|| =
(𝜋/2)×||𝜃p1 – 𝜃p2||, ||dp1 – dp2|| ∈ [0, 1], and ||sin

(
𝜃p1

)
– sin

(
𝜃p2

)|| ∈
[0, 1] that

D
(
p1, p2

)
= 1

4
(
|
(
𝜇p1

)2 – (𝜇p2)2 | + |
(
𝜈p1

)2 – (𝜈p2)2 |
+ |

(
rp1

)2 – (rp2)2 | + |dp1 – dp2|

+ ||sin
(
𝜃p1

)
– sin

(
𝜃p2

)||)
= 1

4
(
|
(
𝜇p1

)2 – (𝜇p2)2 | + |
(
𝜈p1

)2 – (𝜈p2)2 |
+ |

(
𝜇p1

)2 + (
𝜈p1

)2 | – | (𝜇p2)2 + (
𝜈p2

)2 |
+ (2/𝜋) × |𝜃p1 – 𝜃p2| + | sin

(
𝜃p1

)
– sin

(
𝜃p2

)
|
)

≤ 1
4
((
𝜇p1

)2 + (
𝜈p1

)2 + (
𝜇p1

)2 + (
𝜈p1

)2 + (2/𝜋)

× |𝜃p1 – 𝜃p2| + | sin
(
𝜃p1

)
– sin

(
𝜃p2

)
|
)

≤ 1
4 (1 + 1 + 1 + 1) = 1.

Moreover, all the absolute deviations in Eq. (15) are equal to or
greater than zero, which completes the proof of Theorem 1.

Theorem 2. Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. Then,

D
(
p1, p2

)
= 0 if and only if p1 = p2.

Proof：Because all the absolute deviations in Eq. (15) are equal to
or greater than zero, ifD

(
p1, p2

)
= 0, then each absolute deviation

is equal to zero.

If ||
(
𝜇p1

)2 – (𝜇p2)2|| = 0, ||
(
𝜈p1

)2 – (𝜈p2)2|| = 0, ||
(
rp1

)2 – (rp2)2|| =
0, ||sin

(
𝜃p1

)
– sin

(
𝜃p2

)|| = 0, ||dp1 – dp2|| = 0, 𝜇p1, 𝜇p2, 𝜈p1, 𝜈p2 ∈
[0, 1], and 𝜃p1, 𝜃p2 ∈ [0, 𝜋/2], then 𝜇p1 = 𝜇p2, 𝜈p1 = 𝜈p2, rp1 = rp2,
𝜃p1 = 𝜃p2, and dp1 = dp2.

Via any magnitude comparison method, we can obtain the result
p1 = p2, which completes the proof of Theorem 2.

Theorem 3. Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2) be two PFNs. Then,

D
(
p1, p2

)
= D

(
p2, p1

)
.

Proof：It follows from |
(
𝜇p1

)2 –
(
𝜇p2

)2 | = ||
(
𝜇p2

)2 – (𝜇p1)2||,
||
(
𝜈p1

)2 – (𝜈p2)2|| = ||
(
𝜈p2

)2 – (𝜈p1)2||, ||
(
rp1

)2 – (rp2)2|| =
||
(
rp2

)2 – (rp1)2||, ||dp1 – dp2|| = ||dp2 – dp1||, and | sin
(
𝜃p1

)
–

sin
(
𝜃p2

)
| = | sin

(
𝜃p2

)
– sin

(
𝜃p1

)
|, that D

(
p1, p2

)
= D

(
p2, p1

)
,

which completes the proof of Theorem 3.

Theorem 4. Let pi = P
(
𝜇pi, 𝜈pi

)
(i = 1, 2, 3) be three PFNs. If p1 ≤

p2 ≤ p3, then D
(
p1, p2

)
≤ D

(
p1, p3

)
and D

(
p2, p3

)
≤ D

(
p1, p3

)
.

Proof：According to the quasi-ordering on the space of
Pythagorean membership grades from Yager [3], if p1 ≤ p2 ≤ p3
we can obtain 𝜇p1 ≤ 𝜇p2 ≤ 𝜇p3 and 𝜈p1 ≥ 𝜈p2 ≥ 𝜈p3. Then,

||
(
𝜇p1

)2 – (𝜇p2)2|| ≤ ||
(
𝜇p1

)2 – (𝜇p3)2|| ,
||
(
𝜈p1

)2 – (𝜈p2)2|| ≤ ||
(
𝜈p1

)2 – (𝜈p3)2|| ,
||
(
rp1

)2 – (rp2)2|| = ||
(
𝜇p1

)2 + (
𝜈p1

)2 – ((𝜇p2)2 + (
𝜈p2

)2)||
= ||

(
𝜇p1

)2 – (𝜇p2)2 + (
𝜈p1

)2 – (𝜈p2)2||
≤ ||

(
𝜇p1

)2 – (𝜇p3)2 + (
𝜈p1

)2 – (𝜈p3)2||
= ||

(
𝜇p1

)2 + (
𝜈p1

)2 – ((𝜇p3)2 + (
𝜈p3

)2)||
= ||

(
rp1

)2 – (rp3)2|| .
From 𝜃p = arctan

(
𝜈p/𝜇p

)
, tan

(
𝜃p
)

= 𝜈p/𝜇p, 𝜃p ∈ [0, 𝜋/2],
tan

(
𝜃p1

)
≥ tan

(
𝜃p2

)
≥ tan

(
𝜃p3

)
, and the function tan

(
𝜃p
)
being

strictly monotone, it follows that 𝜃p1 ≥ 𝜃p2≥ 𝜃p3.

||dp1 – dp2|| = (2/𝜋) ||𝜃p1 – 𝜃p2||
≤ (2/𝜋) ||𝜃p1 – 𝜃p3||
= ||dp1 – dp3|| ,

and ||sin
(
𝜃p1

)
– sin

(
𝜃p2

)|| ≤ ||sin
(
𝜃p1

)
– sin

(
𝜃p3

)||. Thus,
D
(
p1, p2

)
= 1
4
(
|
(
𝜇p1

)2 – (𝜇p2)2 | + |
(
𝜈p1

)2 – (𝜈p2)2 |
+|

(
rp1

)2 – (rp2)2 | + |dp1 – dp2|
+ ||sin

(
𝜃p1

)
– sin

(
𝜃p2

)||)
≤ 1
4
(
|
(
𝜇p1

)2 – (𝜇p3)2 | + |
(
𝜈p1

)2 – (𝜈p3)2 |
+|

(
rp1

)2 – (rp3)2 | + |dp1 – dp3|
+ ||sin

(
𝜃p1

)
– sin

(
𝜃p3

)||)
= D

(
p1, p3

)
.

Similarly, we can also prove D
(
p2, p3

)
≤ D

(
p1, p3

)
, which com-

pletes the proof of Theorem 4.

In this analysis, we have proved that the proposed normalizedHam-
ming distance of PFNs is nonnegative, symmetric, and transitivity;
moreover, the distance is in the range of [0, 1].

3.3. Comparative Analysis of the Distance
Measures for PFNs

In order to illustrate the advantages of the proposed distance mea-
sure for PFNs, we conduct a comparison between the proposed dis-
tance measure and the existing distance measures from Zhang and
Xu [5], Li and Zeng [32], and Zeng et al. [33]. We explore a series
of cases expressed as PFNs based on the fundamental properties ofPdf_Folio:960
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the distance measure and the deviations of the magnitudes of the
PFNs by scalar functions. The comparison results from different
distancemeasures are summarized in Table 2. It is clear that the pro-
posed distance measure can overcome the difficulties of obtaining
the illogical results of the existing methods. We will investigate the
following four major limitations of the existing distance measures
in details.

First, the property of the distance measure in Theorem 1 is not sat-
isfied by use of DLH, DLE, DLG, D′

ZH, D′
ZE and D′

ZG in Case 1.
Because p1 = P (1.00, 0.00) and p2 =P (0.00, 1.00) are the max-
imum PFN and the minimum PFN by scalar functions, namely,
V (P (1.00, 0.00)) = 1 andV (P (0.00, 1.00)) = 0, it is expected that
the distance between p1 = P (1.00, 0.00) and p2 = P (0.00, 1.00)
is the maximum distance, arriving to one. However, DLH = DLE =
DLG = 0.75 and D′

ZH = D′
ZE = D′

ZG = 0.6, none of which are
up to one. The key problem is that the procedure of distance mea-
sures from Li and Zeng [32] and Zeng et al. [33] directly extended
from the IF numbers, not considered the squared deviations of the
parameters. Therefore, the results from Li and Zeng [32] and Zeng
et al. [33] cannot ensure the greater space of the PFNs and do not
satisfy the property of the distance measure in Theorem 1.

Second, the distance valueDZH = 1 in Cases 1 and 2 is unreasonable.
Although they have the same p1 in the two cases, p2 = P (0.00, 1.00)
(in Case 1) and p2 = P (1.00, 0.00) (in Case 2) are obviously dif-
ferent. The same obtained distance values from the different PFNs
are illogical and unreasonable. According to the deviations of mag-
nitudes by the scalar function, the deviation in Case 2 is 0.5. It is
respected that the distance value is equal to or close to 0.5, soDZH =
1 is unreasonable in Case 2. The key problem is that Zhang and Xu
[5] took the parameters𝜇p, 𝜈p, and hp into the distancemeasure, but

Table 2 Comparison results of six cases from different distance
measures for PFNs.

Case 1 Case 2 Case 3
p1 P(1.00, 0.00) P(1.00, 0.00) P(0.50, 0.71)
p2 P(0.00, 1.00) P(0.00, 0.00) P(0.00, 1.00)

V(p1 ) 1 1 0.4063
V(p2 ) 0 0.5 0

DZH [5] 1 1 0.5
DLH [32] 0.75 0.5 0.4212
DLE [32] 0.75 0.5 0.1849
DLG [32] 0.75 0.5 0.0838
DZH′[33] 0.6 0.6 0.3627
DZE′[33] 0.6 0.6 0.1515
DZG′[33] 0.6 0.6 0.0675
D (proposed) 1 0.5 0.3938

Case 4 Case 5 Case 6
p1 P(0.40, 0.20) P(0.40, 0.20) P(0.71, 0.50)
p2 P(0.50, 0.30) P(0.14, 0.30) P(0.00, 1.00)

V(p1 ) 0.5916 0.5916 0.5937
V(p2 ) 0.5909 0.4265 0

DZH [5] 0.14 0.1375 0.75
DLH [32] 0.0827 0.2018 0.5788
DLE [32] 0.0073 0.0606 0.3425
DLG [32] 0.0007 0.0214 0.2071
DZH′[33] 0.0934 0.1838 0.4899
DZE′[33] 0.0095 0.0510 0.2776
DZG′[33] 0.0010 0.0174 0.1662
D (proposed) 0.0990 0.2830 0.6327

PFN, Pythagorean fuzzy number.
Results in orange shaded cells represent the unreasonable distance values.

ignored the rp, dp , and 𝜃p of the PFNs. This limitation will result
in the same distance values from the different PFNs. The similar
results occur in D′

ZH, D′
ZE, and D′

ZG (in Cases 1 and 2). Although
Zeng et al. [33] took account of the parameters 𝜇p, 𝜈p, hp, rp, and
dp of PFNs, they neglected 𝜃p of the PFNs. This limitation will also
result in the same distance values for different PFNs. Hence, the
distance measures from Zhang and Xu [5] and Zeng et al. [33] are
demonstrated to distinguish the differences of the PFNs ineffec-
tively in Cases 1 and 2.

Third, it is easily seen that the property of the distance measure in
Theorem 4 is not satisfied by use ofDZH in Cases 4 and 5. Based on
the magnitudes of the PFNs by scalar function, V (P (0.40, 0.20)) >
V (P (0.40, 0.20)) > V (P (0.50, 0.30)) >V (P (0.15, 0.30)), as shown
in Table 2. We obtain (V (P (0.40, 0.20)) – V (P (0.50, 0.30))) <
(V (P (0.40, 0.20)) – V (P (0.15, 0.30))). It is expected that the dis-
tance value between p1 = P (0.40, 0.20) and p2 = P (0.50, 0.30)
(in Case 4) is greater than the distance value between p1 =
P (0.40, 0.20) and p2 = P (0.14, 0.30) (in Case 5). However, theDZH
value in Case 4 is greater than that in Case 5, which leads to a coun-
terintuitive result. Therefore, the distance measure from Zhang and
Xu [5] is infeasible and unreasonable in Cases 4 and 5.

Fourth, it is clearly seen that the distance values by use of
DLE,DLG,D′

ZE, and D′
ZG in Cases 3 and 6 are unreasonable. Since

P(0.50, 0.71) and P(0.71, 0.50) are compliment, they have the
same rp, dp, and 𝜃p. Meanwhile, in line with the magnitudes by
scalar functions, V (P (0.50, 0.71)) – V (P (0.00, 1.00)) = 0.4063
and V (P (0.71, 0.50)) – V (P (0.00, 1.00)) = 0.5937. It is logically
respected that the distance values between p1 and p2 are close to
0.4063 in Case 3 and 0.5937 in Case 6. However, we find out that
the obtained results by use of DLE,DLG,D′

ZE,, and D′
ZG have great

disparities with the expected deviations. The similar results occur
in the DLE,DLG,D′

ZE, and D′
ZG values in Cases 4 and 5, which are

obviously less than the deviations of the magnitudes. Therefore, the
Euclidean distancemeasures and the generalized distancemeasures
from Li and Zeng [32] and Zeng et al. [33], respectively, are not
effective to measure the distance for PFNs in these cases.

Based on the comparative discussions, we find out that the distance
measure fromZhang and Xu [5] couldn’t precisely calculate the dis-
tance between two PFNs owing to the ignorance of some important
parameters representing the characteristics of PFNs. The distance
measures from Li and Zeng [31] and Zeng et al. [32] are not sat-
isfied with the maximum value of the distance between two PFNs,
because the relevant procedures do not utilize the squared devia-
tions of corresponding parameters to ensure the greater space of
the PFNs. The distance values of the Euclidean distance measure
and the generalized distance measure have great disparities with
the deviations of the magnitudes between the PFNs. In contrast,
the proposed distancemeasure for PFNs can effectively conquer the
difficulties of illogical results from the existing distance measures
and satisfy the properties of the distance measure in Theorems 1–4.
Moreover, the obtained results are closer to the deviations of the
magnitudes between PFNs.

4. PROPOSED PF-TOPSIS APPROACH FOR
MCDM PROBLEMS

In this section, we introduce the MCDM problems under the PF
environment and apply the novel distance measure in the PF-
TOPSIS approach to deal with the MCDM problems.

Pdf_Folio:961
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4.1. Description of the MCDM Problems
within the PF Environment

An MCDM problem is expressed as a decision matrix, the ele-
ments of which are the assessment values of all alternatives for
every criterion. Given an MCDM problem with PF information,
let X = {x1, x2,⋯ , xm} (m ≥ 2) be a set of alternatives, C =
{C1,C2,⋯ ,Cn} (n ≥ 2) be a set of criteria, 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T(
0 ≤ 𝜔j ≤ 1

(
j = 1, 2,⋯ , n

)
, and ∑n

j=1 𝜔j = 1
)

be the weight

vector for each criterion. P
(
𝜇p ij , 𝜈pij

)
denotes the assessment

value of the ith alternative for the jth criterion, namely, Cj (xi) =
P
(
𝜇p ij , 𝜈pij

)
, and R =

(
Cj (xi)

)
m×n

denotes the PF decision matrix,
which is concisely expressed as follows:

R =
⎡⎢⎢⎢
⎣

P
(
𝜇p11, 𝜈p11

)
P
(
𝜇p12, 𝜈p12

)
… P

(
𝜇p1n, 𝜈p1n

)
P
(
𝜇p21, 𝜈p21

)
P
(
𝜇p22, 𝜈p22

)
… P

(
𝜇p2n, 𝜈p2n

)
⋮ ⋮ ⋱ ⋮

P
(
𝜇pm1, 𝜈pm1

)
P
(
𝜇pm2, 𝜈m2

)
⋯ P

(
𝜇pmn, 𝜈pmn

)
⎤⎥⎥⎥
⎦

. (16)

4.2. Process of the Proposed Approach

To solve these MCDM problems within the PF environment, we
propose the PF-TOPSIS approach, which is based on the principle
that the optimal solution has the shortest distance from the PFPIS
and the farthest distance from the PFNIS.

First, we determine the PFPIS
(
x+

)
and the PFNIS (x–). The clas-

sical TOPSIS introduced the PIS and NIS, which were determined
by the union operator and the intersection operator of fuzzy sets
according to the properties of the criteria. The benefit criteria
belong to J1 and the cost criteria belong to J2. Akram et al. [10]
extended the PFPIS and the PFNIS from the classical TOPSIS
method. Let x+c and x–c denote the classical type PFPIS and PFNIS,
respectively, using the following formulas:

x+c = {Cj,max
(
𝜇pj (xi)

)
, min

(
𝜇pj (xi)

)
|Cj ∈ J1} ,

{Cj,min
(
𝜇pj (xi)

)
, max

(
𝜇pj (xi)

)
|Cj ∈ J2}

= {C1, P
(
𝜇+p1, 𝜈+p1

)
} , {C2, P

(
𝜇+p2, 𝜈+p2

)
} ,⋯ ,

{Cn, P
(
𝜇+pn, 𝜈+pn

)
} , j = 1, 2,⋯ , n,

(17)

x–c = {Cj,min
(
𝜇pj (xi)

)
, max

(
𝜇pj (xi)

)
|Cj ∈ J1} ,

{Cj,max
(
𝜇pj (xi)

)
, min

(
𝜇pj (xi)

)
|Cj ∈ J2}

= {C1, P
(
𝜇–
p1, 𝜈–p1

)
} , {C2, P

(
𝜇+p2, 𝜈–p2

)
} , ⋯ ,

{Cn, P
(
𝜇–
pn, 𝜈–pn

)
} , j = 1, 2,⋯ , n.

(18)

The traditional TOPSIS also introduced the PIS and the NIS deter-
mined the fixed number 1 or 0. Wu et al. [40] employed the PFN
P(1, 0) or P(0, 1) as the fixed type PFPIS

(
x+f

)
and the fixed type

PFNIS
(
x–f
)
, respectively, as follows:

x+f = {Cj, P (1, 0) |Cj ∈ J1} , {Cj, P (0, 1) |Cj ∈ J2} , (19)

x–f = {Cj, P (0, 1) |Cj ∈ J1} , {Cj, P (1, 0) |Cj ∈ J2} . (20)

Zhang and Xu [5] developed the score function in Eq. (4) for identi-
fying the PFPIS and the PFNIS, which narrowed the distances from
the PFPIS and the PFNIS compared to the classical TOPSIS. Let x+s
and x–s denote the scored type PFPIS and PFNIS, respectively, using
the following formulas:

x+s = {Cj,max
(
s
(
Cj (xi)

))
| j = 1, 2,⋯ , n}

= {C1, P
(
𝜇+p1, 𝜈+p1

)
} , {C2, P

(
𝜇+p2, 𝜈+p2

)
} ,⋯ ,

{Cn, P
(
𝜇+pn, 𝜈+pn

)
} ,

(21)

x–s = {Cj,min
(
s
(
Cj (xi)

))
| j = 1, 2,⋯ , n}

= {C1, P
(
𝜇–
p1, 𝜈–p1

)
} , {C2, P

(
𝜇–
p2, 𝜈–p2

)
} ,⋯ ,

{Cn, P
(
𝜇–
pn, 𝜈–pn

)
} .

(22)

Yager [3] developed the scalar function to identify the magnitudes
of the PFNs. We employ the scalar function in Eq. (7) to determine
thePFPIS and thePFNIS. Let x+v and x–v denote the scalar typePFPIS
and PFNIS, respectively, using the following formulas:

x+v = {Cj,max
(
V
(
Cj (xi)

))
|Cj ∈ J1} ,

{Cj,min
(
V
(
Cj (xi)

))
|Cj ∈ J2}

= {C1, P
(
𝜇+p1, 𝜈+p1

)
} , {C2, P

(
𝜇+p2, 𝜈+p2

)
} ,⋯ ,

{Cn, P
(
𝜇+pn, 𝜈+pn

)
} , j = 1, 2,⋯ , n,

(23)

x–v = {Cj,min
(
V
(
Cj (xi)

))
|Cj ∈ J1} ,

{Cj,max
(
V
(
Cj (xi)

))
|Cj ∈ J2}

= {C1, P
(
𝜇–
p1, 𝜈–p1

)
} , {C2, P

(
𝜇–
p2, 𝜈–p2

)
} ,⋯ ,

{Cn, P
(
𝜇–
pn, 𝜈–pn

)
} , j = 1, 2,⋯ , n.

(24)

Next, we calculate the distances from each alternative to the PFPIS
D
(
xi, x+

)
and the PFNIS D (xi, x–) in MCDM practice because we

may not find the PFPIS
(
x+

)
or the PFNIS (x–) if it is outside the

feasible region, namely, if x+ or x– ∉ X. Moreover, in practice, deci-
sion makers typically express the importance of each element rela-
tive to the others based on various preferences.We consider𝜛j with
respect to the importance of the criteria and propose the weighted
distance measure for PFNs.

Definition 11. Let pi = {P
(
𝜇p ij , 𝜈pij

)
|i = 1, 2; j = 1, 2,⋯ , n} be

two PFNs on C = {C1,C2,⋯ ,Cn}. 𝜔j is the importance of cri-
terion j; the vector of importances for all criteria is expressed as
𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T. The weighted distance measure equation
between p1 and p2 is expressed as follows:

DW
(
p1, p2

)
= 1

4 ∑
n
j=1 𝜔j

(
|
(
𝜇p1j

)2 – (𝜇p2j)2 | + |
(
𝜈p1j

)2
–
(
𝜈p2j

)2 | + |
(
rp1j

)2 – (rp2j)2 | + |dp1j – dp2j|+

+ | sin
(
𝜃p1j

)
– sin

(
𝜃p2j

)
|
)
,

(25)

where 0 ≤ 𝜔j ≤ 1
(
j = 1, 2, … , n

)
and∑n

j=1 𝜔j = 1.
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Example 6. Let p1 = {P (0.8, 0.3) , P (0.7, 0.3) , P (0.6, 0.3)} and
p2 = {P (0.7, 0.2) , P (0.6, 0.2) , P (0.8, 0.2)} be two sets of PFNs with
respect to the set of criteria C = {C1,C2,C3}. The weight vector
of the criteria is 𝜔 = (0.2, 0.3, 0.5)T. According to Definition 11,
the weighted Hamming distance between p1 and p2 is calculated as
follows:

DW
(
p1, p2

)
= 0.25 ×

(
0.2 ×

(||0.82 – 0.72|| + ||0.32 – 0.22|| +
||0.852 – 0.732|| + |0.77 – 0.82| + |sin (0.36) – sin (0.28)|

)
+(

0.3 ×
(||0.72 – 0.62|| + ||0.32 – 0.22|| + ||0.762 – 0.632|| +

|0.74 – 0.80| + |sin (0.40) – sin (0.32)|) +
(
0.5 ×

(
|0.62–

0.82| + ||0.32 – 0.22|| + ||0.672 – 0.822|| + |0.70 – 0.84|
+ |sin (0.46) – sin (0.24)|)) = 0.2439.

Theorem 5. Let pi = {P
(
𝜇p ij , 𝜈pij

)
|i = 1, 2; j = 1, 2,⋯ , n} be

two PFNs on C = {C1,C2,⋯ ,Cn}. The vector of importance
for all criteria is expressed as 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T. Then,
0 ≤ DW

(
p1, p2

)
≤ 1.

Proof: Since 0 ≤ 𝜔j ≤ 1
(
j = 1, 2, … , n

)
and ∑n

j=1 𝜔j = 1, if
DWH

(
p1, p2

)
= 1, we should set the distance of each criterion

between two PFNs to D
(
p1, p2

)
= 1; if DWH

(
p1, p2

)
= 0, we

should also set it to D
(
p1, p2

)
= 0. Since all the normalized Ham-

ming distances of PFNs satisfy the properties that D
(
p1, p2

)
∈

[0, 1], we obtain DW
(
p1, p2

)
∈ [0, 1], which completes the proof

of Theorem 5.

Theorem 6. Let pi = {P
(
𝜇p ij , 𝜈pij

)
|i = 1, 2; j = 1, 2,⋯ , n} be two

PFNs on C = {C1,C2,⋯ ,Cn}. The vector of importance for all crite-
ria is expressed as 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T. Then, DW
(
p1, p2

)
= 0 if

and only if p1 = p2.

Proof: Since all the absolute deviations in Eq. (25) are equal to or
greater than zero, if DW

(
p1, p2

)
= 0, each absolute deviation is

equal to zero. In addition, 𝜇p1j, 𝜇p2j, 𝜈p1j, 𝜈p2j, rp1j, rp2j ∈ [0, 1]，
𝜃p1j, and 𝜃p2j ∈ [0, 𝜋/2]. Therefore, 𝜇p1j = 𝜇p2j, 𝜈p1j = 𝜈p2j,
rp1j = rp2j, 𝜃p1j = 𝜃p2j, and dp1j = dp2j. Employing any magnitude
comparison method, we can obtain p1 = p2 under the same crite-
rion, which completes the proof of Theorem 6.

Theorem 7. Let pi = {P
(
𝜇p ij , 𝜈pij

)
|i = 1, 2; j = 1, 2,⋯ , n} be two

PFNs on C = {C1,C2,⋯ ,Cn}. The vector of importance for all cri-
teria is expressed as 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T. Then, DW
(
p1, p2

)
=

DW
(
p2, p1

)
.

Theorem 8. Let pi = {P
(
𝜇p ij , 𝜈pij

)
|i = 1, 2, 3; j = 1, 2,⋯ , n} be

three PFNs on C = {C1,C2,⋯ ,Cn}. The vector of importance for all
criteria is expressed as 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)

T. Then, DW
(
p1, p2

)
≤

DW
(
p1, p3

)
and DW

(
p2, p3

)
≤ DW

(
p1, p3

)
.

Proof: In line with Theorem 4, if p1 ≤ p2 ≤ p3 for each crite-
rion, we can obtain 𝜇p1 ≤ 𝜇p2 ≤ 𝜇p3 and 𝜈p1 ≥ 𝜈p2 ≥ 𝜈p3. Then,
D
(
p1, p2

)
≤ D

(
p1, p3

)
andD

(
p2, p3

)
≤D

(
p1, p3

)
. For two PFNs

on C = {C1,C2,⋯ ,Cn}, DW
(
p1, p2

)
is equal to the weighted sum

of each D
(
p1, p2

)
. Since the weight of the jth criterion is the same,

DW
(
p1, p2

)
≤ DW

(
p1, p3

)
remains satisfied.

Similarly, we can also proveDW
(
p2, p3

)
≤DW

(
p1, p3

)
by the same

way, which completes the proof of Theorem 8.

We obtain the distance of alternative xi from PFPIS
(
x+

)
based on

Eq. (25), which can be defined as follows:

D
(
xi, x+

)
=

n

∑
j=1

𝜔jD
(
Cj (xi) ,Cj

(
x+

))
= 1

4
n

∑
j=1

𝜔j

(
||
(
𝜇pij

)2 – (𝜇+pj)2|| + ||
(
𝜈pij

)2 – (𝜈+pj )2||
+ |||

(
rpij

)2 – (r+pj)2||| + ||dpij – d+pj|| + | sin
(
𝜃pij

)
– sin

(
𝜃+pj

)
|
)
,

(26)

where i = 1, 2,⋯ ,m and x+ represents x+c , x+f or x+v .

According to the principle of TOPSIS, the smaller D
(
xi, x+

)
is, the

better the alternative xi is. Let:

Dmin
(
xi, x+

)
=

m
min
i=1

D
(
xi, x+

)
. (27)

The distance between alternative xi and the PFNIS(x–) can be
defined as follows:

D (xi, x–) =
n

∑
j=1

𝜔jD
(
Cj (xi) ,Cj (x–)

)
= 1

4
n

∑
j=1

𝜔j

(
||
(
𝜇pij

)2 – (𝜇–
pj
)2|| + ||

(
𝜈pij

)2 – (𝜈–pj)2||
+ |||

(
rpij

)2 – (r–pj)2||| + ||dpij – d–pj|| + | sin
(
𝜃pij

)
– sin

(
𝜃–pj

)
|
)
,

(28)

where i = 1, 2,⋯ ,m and x– represents x–c , x–f or x
–
v .

According to the principle of TOPSIS, the larger D (xi, x–) is, the
better the alternative xi is. Let:

Dmax (xi, x–) =
m

max
i=1

D (xi, x–) . (29)

Traditionally, we calculate the RC of the alternative xi with respect
to the PFPIS

(
x+

)
and the PFNIS (x–) in linewith the basic principle

of classical TOPSIS. The formula for RC (xi) is expressed as follows:

RC (xi) =
D (xi, x–)

D (xi, x+) + D (xi, x–)
. (30)

In view of Hadi-Vencheh andMirjaberi’s formula [41], according to
which the optimal solution has the shortest distance from the PIS
and the farthest distance from the NIS, concurrently, Zhang and Xu
[5] and Akram et al. [10] utilized a revised index, which is denoted
as 𝜁 (xi), to identify the ranking order, which is expressed as follows:

𝜁 (xi) =
D (xi, x–)

Dmax (xi, x–)
–

D
(
xi, x+

)
Dmin (xi, x+)

. (31)

RC (xi) is the classical index for determining the ranking order of
alternatives, which has been extensively used and can reflect the
performance of TOPSIS. The index 𝜁 (xi) considers the optimal
solution to be close to PFPIS and far from PFNIS simultaneously.
To examine the feasibility of the proposed approach, we adopt both
indices in this paper. According to RC (xi) or 𝜁 (xi), we obtain thePdf_Folio:963
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ranking order of alternatives xi, which we use to determine the opti-
mal solution according to the maximum value of RC (xi) or 𝜁 (xi).

x∗ = {xi ∶
(
i = RC (xi) =

m
max
i=1

RC (xi)
)
} , (32)

x∗′ = {xi ∶
(
i = 𝜁 (xi) =

m
max
i=1

𝜁 (xi)
)
} . (33)

4.3. Algorithm of the Proposed Approach

In line with the above analysis, the proposed PF-TOPSIS approach
is separated into four paths for identifying the PFPIS and the PFNIS:
the classical type applies the classical TOPSIS union operator or
intersection operator; the fixed type applies the fixedPFNs ofP(1, 0)
or P(0, 1); the scored type applies the score function; the scalar type
applies the scalar function. We describe the algorithm of the pro-
posed PF-TOPSIS method in the following seven steps. We present
a flowchart that illustrates the process of the proposed approach
in Fig. 2.

Step 1. Construct a PF decision matrix R =
(
Cj (xi)

)
m×n

for an
MCDM problem under the PF environment, where each element
Cj (xi) is the assessment value of the ith alternative with respect to
the jth criterion.

Step 2. Identify the PFPIS. Utilize Eqs. (17), (19), (21), and (23) to
identify the PFPIS x+ = {C1

(
x+

)
,C2

(
x+

)
,⋯ ,Cn

(
x+

)
} (x+ rep-

resents x+c , x+f , x
+
s or x+v ) for the classical type, the fixed type, the

scored type, and the scalar type, respectively.

Step 3. Identify the PFNIS. Utilize Eqs. (18), (20), (22), and (24) to
identify the PFNIS x– = {C1 (x–) ,C2 (x–) ,⋯ ,Cn (x–)} (x− repre-
sents x–c , x–f , x

–
s or x–v) for the classical type, the fixed type, the scored

type, and the scalar type, respectively.

Figure 2 Flowchart of the proposed Pythagorean fuzzy technique for
order preference by similarity to ideal solutions (PF-TOPSIS) approach
for multicriteria decision-making (MCDM) problems.

Step 4. Employ Eq. (26) to calculate the distance of alternative xi
from the PFPIS and use Eq. (27) to determine the minimum dis-
tance from the PFPIS.

Step 5. Employ Eq. (28) to calculate the distance of alternative xi
from the PFNIS and use Eq. (29) to determine the maximum dis-
tance from the PFNIS.

Step 6. Utilize Eqs. (30) and (31) to compute the RC index RC (xi)
and the revised closeness index 𝜁 (xi), respectively, of alternative xi.
Step 7. Employ Eqs. (32) and (33) to obtain the ranking order of
alternatives xi and identify the optimal solution, which corresponds
to the maximum value of RC (xi) or 𝜁 (xi).

5. ILLUSTRATIVE EXAMPLE

In this section, we consider an example evaluation for emerging
technology commercialization that was adapted from Wei and Lu
[42] as anMCDMproblemonwhich to evaluate the feasibility of the
proposed approaches and conduct a comparison analysis among
four types of approaches under the PF environment.

5.1. Description of the Example

The example from Wei and Lu [42] was used to evaluate the com-
mercialization of emerging technology companies. Five potential
emerging technology companies are expressed as a set of alterna-
tivesX = {x1, x2, x3, x4, x5}. The experts selected fourmajor criteria
(C1: the technical advancement; C2: the potential market risk; C3:
the industrialization infrastructure, human resources, and financial
conditions; and C4: the employment criterion and the development
of science and technology), which are expressed as a set of crite-
ria C = {C1,C2,C3,C4}. All the criteria are benefit attributes. The
weight vector of the criteria that is provided by the decision makers
is expressed as 𝜔 = (0.2, 0.1, 0.3, 0.4)T.
The assessment values of the five companies with respect to the four
criteria that were specified by the decision makers are expressed
as PFNs, as listed in Table 3. For example, the element C1 (x1) =
P (0.5, 0.8) specifies that the degree to which alternative x1 satisfies
criterion C1 is 0.5 and the degree to which alternative x1 dissatisfies
criterion C1 is 0.8.

5.2. Decision Process of the Proposed
Approach

According to the algorithm of the proposed PF-TOPSIS approach,
we apply the proposed PF-TOPSIS approach to deal with the
MCDM problem that is discussed in Subsection 5.1.

Table 3 PF decision matrix that was specified by the decision maker.

C1 C2 C3 C4
x1 P(0.5,0.8) P(0.6,0.3) P(0.3,0.6) P(0.5,0.7)
x2 P(0.7,0.5) P(0.7,0.2) P(0.9,0.2) P(0.8,0.5)
x3 P(0.6,0.2) P(0.5,0.2) P(0.5,0.3) P(0.6,0.3)
x4 P(0.4,0.2) P(0.6,0.3) P(0.3,0.4) P(0.5,0.4)
x5 P(0.6,0.4) P(0.4,0.8) P(0.7,0.6) P(0.5,0.8)
PF, Pythagorean fuzzy.
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Step 1. We utilize Eqs. (17) and (18) to calculate the classical type
PFPIS

(
x+c

)
and the classical type PFNIS (x–c ), respectively. Then we

obtain the results of x+c and x–c as follows:

x+c = {P (0.7, 0.2) , P (0.7, 0.2) , P (0.9, 0.2) , P (0.8, 0.3)} ,
x–c = {P (0.4, 0.8) , P (0.4, 0.8) , P (0.3, 0.6) , P (0.5, 0.8)} .

We utilize Eqs. (19) and (20) to calculate the fixed type PFPIS
(
x+f

)
and the fixed type PFNIS (x–f ), respectively. We obtain the results of
x+f and x–f as follows:

x+f = {P (1.0, 0.0) , P (1.0, 0.0) , P (1.0, 0.0) , P (1.0, 0.0)} ,
x–f = {P (0.0, 1.0) , P (0.0, 1.0) , P (0.0, 1.0) , P (0.0, 1.0)} .

We utilize Eqs. (21) and (22) to calculate the scored type PFPIS
(
x+s

)
and the scored type PFNIS (x–s ), respectively. We obtain the results
of x+s and x–s as follows:

x+s = {P (0.6, 0.2) , P (0.6, 0.3) , P (0.9, 0.2) , P (0.8, 0.5)} ,
x–s = {P (0.5, 0.8) , P (0.4, 0.8) , P (0.3, 0.6) , P (0.5, 0.8)} .

We utilize Eqs. (23) and (24) to calculate the scalar type PFPIS
(
x+v

)
and the scalar type PFNIS (x–v ), respectively. Then, we obtain the
results of x+v and x–v as follows：

x+v = {P (0.6, 0.2) , P (0.5, 0.2) , P (0.9, 0.2) , P (0.6, 0.3)} ,
x–v = {P (0.5, 0.8) , P (0.4, 0.8) , P (0.3, 0.6) , P (0.5, 0.8)} .

Step 2. We utilize Eqs. (26) and (27) and Eqs. (28) and (29)
to calculate the distances of each alternative xi from the PFPIS
as well as the PFNIS, respectively. The results of D

(
xi, x+c

)
and

D (xi, x–c ), D
(
xi, x+f

)
and D

(
xi, x–f

)
, D

(
xi, x+s

)
and D (xi, x–s ), as

well asD
(
xi, x+v

)
andD (xi, x–v ) are listed in Tables 4–7, respectively.

Alternative x2 has the shortest distance from PFPIS for the classi-
cal type, the fixed type, and the scored type approaches, whereas x3
does for the scalar type approach. Meanwhile, alternative x3 has the
farthest distance from the PFNIS for all types of approaches.

Step 3.Weemploy Eqs. (30) and (31) to compute theRC (xi) and the
𝜁 (xi) for each alternative xi from four types of approaches, which
are also listed in Tables 4–7.

Step 4.Weobtain the ranking order of the five alternatives in accor-
dance of the results fromRC (xi) and 𝜁 (xi), which are listed inTables
4–7.

The ranking results that are based onRC (xi) and 𝜁 (xi) in this exam-
ple are completely consistent from classical type, fixed type, and
scored type approaches, namely, x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1, among

Table 4 Results that were obtained from the classical type
PF-TOPSIS approach.

D
(
xi, x+c

)
D (xi, x–c ) RC (xi)(Rank) 𝜁 (xi)(Rank)

x1 0.5116 0.1740 0.2538(5) −2.6807(5)
x2 0.1688 0.4978 0.7467(1) 0.0000(1)
x3 0.2505 0.5316 0.6797(2) −0.4160(2)
x4 0.3930 0.4106 0.5110(3) −1.5026(3)
x5 0.4888 0.2827 0.3665(4) −2.3271(4)
PF-TOPSIS, Pythagorean fuzzy technique for order preference by similarity to ideal
solutions; RC, relative closeness.

Table 5 Results that were obtained from the fixed type PF-TOPSIS
approach.

D
(
xi, x+f

)
D
(
xi, x–f

)
RC (xi)(Rank) 𝜁 (xi)(Rank)

x1 0.8243 0.6900 0.4556(5) −1.0036(5)
x2 0.4403 0.7945 0.6434(1) 0.0000(1)
x3 0.6013 0.8636 0.5895(2) −0.2780(2)
x4 0.7437 0.8436 0.5315(3) −0.6270(3)
x5 0.7738 0.6797 0.4676(4) −0.9017(4)
PF-TOPSIS, Pythagorean fuzzy technique for order preference by similarity to ideal
solutions; RC, relative closeness.

Table 6 Results that were obtained from the scored type
PF-TOPSIS approach.

D
(
xi, x+s

)
D (xi, x–s ) RC (xi)(Rank) 𝜁 (xi)(Rank)

x1 0.4411 0.1597 0.2657(5) −3.7959(5)
x2 0.1076 0.4924 0.8207(1) −0.0642(1)
x3 0.2521 0.5262 0.6761(2) −1.3423(2)
x4 0.3295 0.4123 0.5570(3) −2.2747(3)
x5 0.3973 0.2215 0.3579(4) −3.2713(4)
PF-TOPSIS, Pythagorean fuzzy technique for order preference by similarity to ideal
solutions; RC, relative closeness.

Table 7 Results that were obtained from the scalar type PF-TOPSIS
approach.

D
(
xi, x+v

)
D (xi, x–v ) RC (xi)(Rank) 𝜁 (xi)(Rank)

x1 0.4855 0.1597 0.2475(5) −1.7367(5)
x2 0.2380 0.4924 0.6742(2) −0.0642(2)
x3 0.1217 0.5262 0.8122(1) 0.4887(1)
x4 0.2979 0.4143 0.5817(3) −0.4644(3)
x5 0.4579 0.2774 0.3772(4) −1.3971(4)
PF-TOPSIS, Pythagorean fuzzy technique for order preference by similarity to ideal
solutions; RC, relative closeness.

which x2 is the best alternative. However, the ranking results from
the scalar type approach is x3 ≻ x2 ≻ x4 ≻ x5 ≻ x1, among which
x3 is the best alternative.

5.3. Comparative Analysis

The main differences among the approaches are the identifica-
tion of the PFPIS, the PFNIS, and the distance measure of the
alternative from the PFPIS and the PFNIS according to the pre-
viously described analysis. Therefore, we compare the scalar type
PF-TOPSIS with the classical type PF-TOPSIS and the fixed type
PF-TOPSIS to analyze how the PFPIS and the PFNIS influence the
ranking order results for the same distance measure. Meanwhile,
we compare the scalar type approach with the scored type approach
that employs the distance measure from Zhang and Xu [5] to ana-
lyze the influence of the PFPIS, the PFNIS, and the distance mea-
sure on the ranking order results.

First, we calculate the PFPIS and the PFNIS via the above four
approaches. The PFPIS

(
x+

)
and PFNIS (x–) results are listed in

Table 8.

The differences between the results of x+ and x– that were obtained
via the methods of the scored type and the scalar type are smaller
compared to the methods of the classical type and the fixed type,
as listed in Table 8. Therefore, the results of the scored type and thePdf_Folio:965
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scalar type narrow the range of the ideal solution, which directly
influence the distance from x+ and x–. In addition, the main dif-
ference between the methods of the scored type and the scalar type
depends mainly onC2 and C4 with respect to x+; we should further
compare the magnitudes of three PFNs: P (0.5, 0.2), P (0.6, 0.3),
and P (0.8, 0.5).
According to Li and Zeng [32] and Zeng et al. [33], the magnitude
comparison methods from score functions are extended directly
from IF numbers. Considering the properties of PFNs, especially
the direction of commitment and the angle in degrees, they com-
pared the effectiveness of themagnitudemeasure between the score
function and the scalar function that was based on the same PFN.
They concluded that the scalar function was more accurate. Chen
[39] further analyzed the desirable and important properties of
scalar function V

(
p
)
: V

(
p
)
∈ [0, 1]; V

(
p
)
= 0.5 if

(
rp, 𝜃p

)
=

(0, 𝜋/4); V
(
p
)
= 1 if

(
rp, 𝜃p

)
= (1, 0); V

(
p
)
decreases as 𝜃p

increases if rp is fixed; V
(
p
)
increases as rp increases if 𝜃p is fixed

and 𝜃p<π/4; V
(
p
)
decreases as rp increases if 𝜃p is fixed and 𝜃p >

𝜋/4. Considering the unique properties of the PFNs, the scalar func-
tion is more suitable for magnitude comparison of PFNs than the
score function. We obtain V(P(0.5, 0.2) = 0.6388, V(P(0.6, 0.3) =
0.6374, and V(P(0.8, 0.5) = 0.6362; the magnitude comparison
results, namely, P (0.5, 0.2) > P (0.6, 0.3) > P (0.8, 0.5), are reason-
able, which precisely reflect the PFPIS. Additionally, the results of
x– that are obtained via the scored type approach are the same as
those of the scalar type approach.

Second, we calculate the distancesD
(
xi, x+

)
between alternative xi

and the PFPIS and the distancesD (xi, x–) between alternative xi and
the PFNIS, which are reported in Tables 9 and 10, respectively.

To facilitate understanding, we present theD
(
xi, x+

)
andD (xi, x–)

comparison results graphically in Figs. 3 and 4, respectively. The

Table 8 PFPIS and PFNIS results that are based on four PF-TOPSIS
approaches.

x+ C 1 C 2 C 3 C 4
I P(0.7,0.2) P(0.7,0.2) P(0.9,0.2) P(0.8,0.3)
II P(1.0,0.0) P(1.0,0.0) P(1.0,0.0) P(1.0,0.0)
III P(0.6,0.2) P(0.6,0.3) P(0.9,0.2) P(0.8,0.5)
IV P(0.6,0.2) P(0.5,0.2) P(0.9,0.2) P(0.6,0.3)

x– C1 C2 C3 C4
I P(0.4,0.8) P(0.4,0.8) P(0.3,0.6) P(0.5,0.8)
II P(0.0,1.0) P(0.0,1.0) P(0.0,1.0) P(0.0,1.0)
III P(0.5,0.8) P(0.4,0.8) P(0.3,0.6) P(0.5,0.8)
IV P(0.5,0.8) P(0.4,0.8) P(0.3,0.6) P(0.5,0.8)
PFNIS, Pythagorean fuzzy negative ideal solution; PFPIS, Pythagorean fuzzy positive ideal
solution; PF-TOPSIS, Pythagorean fuzzy technique for order preference by similarity to
ideal solutions.
I: The classical type PF-TOPSIS;
II: The fixed type PF-TOPSIS;
III: The scored type PF-TOPSIS;
IV: The scalar type PF-TOPSIS.

Table 9 D
(
xi, x+

)
results based on four approaches.

I (Rank) II (Rank) III (Rank) IV (Rank)
x1 0.5116(5) 0.8243(5) 0.4920(5) 0.4855(5)
x2 0.1688(1) 0.4403(1) 0.1043(1) 0.2380(2)
x3 0.2505(2) 0.6013(2) 0.3640(2) 0.1217(1)
x4 0.3930(3) 0.7437(3) 0.4480(4) 0.2979(3)
x5 0.4888(4) 0.7738(4) 0.3698(3) 0.4579(4)

distance values of the fixed type approach are larger than those of
the other approaches due to the PFPIS and PFNIS. The methods of
the classical type, the fixed type, and the scalar type employed the
proposed distance measurement method; however, the results are
partially inconsistent (x2 has the minimum distance from x+ with
the classical type approach and the fixed type approach, whereas x3
has the minimum distance with the scalar type approach) due to
the differences in their PFPISs and PFNISs. Moreover, the differ-
ence between the scored type approach and the scalar type approach
mainly depends on x2 and x3 with respect to both D

(
xi, x+

)
and

D (xi, x–), namely, x2 has the minimum distance from the PFPIS
and the maximum distance from the PFNIS with the scored type
approach, whereas x3 does with the scalar type approach. In addi-
tion, Zhang and Xu’s distance measure [5] with the scored type
approach considers three parameters (𝜇p, 𝜈p, hp) of PFNs in the
distance measure equation, whereas the proposed distance mea-
surement method with the scalar type approach considers five
parameters (𝜇p, 𝜈p, rp, dp, 𝜃p) in the distance measure equation,
which fully represents the properties of PFNs and is more effective
and feasible.

Third, we obtain the results regarding the RC (xi) and the 𝜁 (xi),
which are utilized to identify the ranking order results via four
approaches, which are listed in Table 11.

Table 10 D
(
xi, x–

)
results based on four approaches.

I (Rank) II (Rank) III (Rank) IV (Rank)
x1 0.1740(5) 0.6900(4) 0.1538(5) 0.1597(5)
x2 0.4978(2) 0.7945(3) 0.5400(1) 0.4924(2)
x3 0.5316(1) 0.8636(1) 0.5073(2) 0.5262(1)
x4 0.4106(3) 0.8436(2) 0.4838(3) 0.4143(3)
x5 0.2827(4) 0.6797(5) 0.3120(4) 0.2774(4)

Figure 3 Graphical representation of the D
(
xi, x+

)
results for four approaches.

Figure 4 Graphical representation of the D
(
xi, x–

)
results for four approaches.
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To compare the differences of the RC (xi) and 𝜁 (xi) values that were
obtained via the four approaches, we plot the results in Fig. 5. The
RC (xi) values from the PF-TOPSIS of the classical type, the fixed
type, and the scored type are very close among alternatives andmay
not differ significantly, whereas the disparity of RC (xi) from the
scalar type approach is more significant among the alternatives. For
𝜁 (xi), the results that were obtained with the classical type and the
fixed type are closer than those that were obtained with the scored
type and the scalar type; hence, the PF-TOPSISwith the scored type
and the scalar type can distinguish the alternatives more clearly.

To provide a clearer view of the comparison of the ranking order
results that are based onRC (xi) and 𝜁 (xi) from the four approaches,
we present Radar charts of the results in Fig. 6. Moreover, we add
the ranking order results from Wei and Lu’s method [42] (denoted
as V) to Fig. 6.

The main differences are those of x2 and x3 between the scalar type
approach and each of the other approaches. The alternative x3 is the
best alternative that is based on RC (xi) and 𝜁 (xi) from the scalar
type approach, which is assigned the second ranking order from the
other approaches. The scalar type approach utilizes the scalar func-
tion to identify the PFPIS and PFNIS, and the proposed distance
measure to calculate the distance from PFPIS and PFNIS, both of
which reflects the unique properties of the PFNs, and x3 is the best
alternative for both D

(
xi, x+

)
and D (xi, x–). Therefore, the results

from the scalar type PF-TOPSIS are reasonable. In addition, the
result fromWei and Lu’method [42] is the same as that of the scored
type approach that is based onRC (xi) becauseWei and Lu’smethod
[42] employs the score function to determine themagnitudes of the

Table 11 RC (xi) , 𝜁 (xi) and ranking results from four approaches.

RC I (Rank) II (Rank) III (Rank) IV Rrank)
x1 0.2538(5) 0.4556(5) 0.2381(5) 0.2475(5)
x2 0.7467(1) 0.6434(1) 0.8382(1) 0.6742(2)
x3 0.6797(2) 0.5895(2) 0.5822(2) 0.8122(1)
x4 0.5110(3) 0.5315(3) 0.5192(3) 0.5817(3)
x5 0.3665(4) 0.4676(4) 0.4576(4) 0.3772(4)

𝜁 I (Rank) II (Rank) III (Rank) IV (Rank)
x1 −2.6807(5) −1.0036(5) −4.4163(5) −1.7367(5)
x2 0.0000(1) 0.0000(1) 0.0646(1) −0.0642(2)
x3 −0.4160(2) −0.278(2) −2.4916(2) 0.4887(1)
x4 −1.5026(3) −0.627(3) −3.3437(4) −0.4644(3)
x5 −2.3271(4) −0.9017(4) −2.9317(3) −1.3971(4)
RC, relative closeness.

Figure 5 Graphical representation of the ranking orders of five
alternatives from four approaches.

PFNs and the distance measure, while ignoring key properties of
PFNs, such as the direction of commitment, the strength of com-
mitment, and the radian.

Moreover, we consider the weight that corresponds to the impor-
tance of the criterion, which is determined by the decision maker’s
preference and may influence the ranking result. To evaluate the
stability, we assume that all criterion weights are equal. Then, the
weight vector of the four criteria in the example in Subsection 5.1
is expressed as 𝜔 = (0.25, 0.25, 0.25, 0.25)T. The RC (xi) and 𝜁 (xi)
under the same weights that are obtained via the four approaches
are listed in Table 12.

Among the alternatives, RC (xi) and 𝜁 (xi) are larger under the same
weights. To facilitate comparison, we collect all the ranking order
results from the four approaches in Table 13.

According to the results in Tables 12 and 13, the ranking order
results that are based on both RC (xi) and 𝜁 (xi) from the scalar
type approach are consistent and satisfy the previous weight con-
sideration condition, which demonstrates the stability of the this
approach. Comparing the results with the classical type and fixed
type approaches, the differences are similar to the previous weight
consideration condition. All the approaches are stable except the
scored type approach; hence, the PFPIS, the PFNIS, and the dis-
tance measure formulas influence RC (xi) and 𝜁 (xi) as well as their
corresponding ranking orders of the alternatives.

In line with the properties of the PFNs, the scalar type PF-TOPSIS
approach utilizes the scalar function to identify the PFPIS and
PFNIS. Moreover, the proposed distance measure can obtain the
distances from PFPIS and PFNIS, which were demonstrated to be

Figure 6 Comparison of the ranking order
results based on indices from four
approaches.

Table 12 RC (xi) , 𝜁 (xi) and their corresponding ranking results from
four approaches under the same weights.

RC I (Rank) II (Rank) III (Rank) IV (Rank)
x1 0.2468(5) 0.4580(5) 0.2349(5) 0.2558(5)
x2 0.7292(1) 0.6355(1) 0.7932(1) 0.6643(2)
x3 0.6931(2) 0.5921(2) 0.6204(2) 0.8219(1)
x4 0.5382(3) 0.5363(3) 0.5548(3) 0.5992(3)
x5 0.3935(4) 0.4776(4) 0.4990(4) 0.4094(4)
𝜁 I (Rank) II (Rank) III (Rank) IV (Rank)
x1 −2.4847(5) −0.9238(5) −3.2283(5) −1.6707(5)
x2 0.0000(1) 0.0000(1) 0.0538(1) −0.0959(2)
x3 −0.2127(2) −0.2193(2) −1.2268(2) 0.5257(1)
x4 −1.1797(3) −0.5427(3) −1.8979(4) −0.3777(3)
x5 −1.9569(4) −0.7963(4) −1.8047(3) −1.2125(4)

RC, relative closeness.
Pdf_Folio:967
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Table 13 Ranking order results from four approaches based
on the same weights.

Index Ranking Order

RC
(
xi
)
from I x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1

RC
(
xi
)
from II x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1

RC
(
xi
)
from III x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1

RC
(
xi
)
from IV x3 ≻ x2 ≻ x4 ≻ x5 ≻ x1

𝜁
(
xi
)
from I x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1

𝜁
(
xi
)
from II x2 ≻ x3 ≻ x4 ≻ x5 ≻ x1

𝜁
(
xi
)
from III x2 ≻ x3 ≻ x5 ≻ x4 ≻ x1

𝜁
(
xi
)
from IV x3 ≻ x2 ≻ x4 ≻ x5 ≻ x1

RC, relative closeness.

relatively stable and accurate for MCDM problems compared to
the classical type, the fixed type, and the scored type PF-TOPSIS
approaches.

6. CONCLUSIONS AND FUTURE
RESEARCH

Distancemeasurement is an essentialmethod for distinguishing the
objects in fuzzy environment. Considering the properties of PFNs,
we proposed a novel distancemeasure that includes five parameters:
the membership degree, the nonmembership degree, the strength
of commitment, the direction of commitment, and the radian. This
measure calculates the distance between two PFNsmore accurately.
Then, we applied the novel distance measurement method in TOP-
SIS with PF information to solveMCDMproblems. On an example,
we demonstrate that the scalar type PF-TOPSIS approach is effec-
tive and accurate.

Themain contributions of this paper are summarized as follows: (1)
This paper proposed a novel distance measurement method that is
based on the properties of the PF sets, considering the parameters of
𝜇p, 𝜈p, rp, dp, and 𝜃p, employing the absolute squared deviations of
𝜇p, 𝜈p, and rp, and using the absolute deviations of dp and sin

(
𝜃p
)
.

The proposed distance measure reflects both the length distance
and the angular distance, which ensures that the space of the PF
sets is larger than that of the IF sets. The proposed distance mea-
sure satisfies the useful properties in the proven theorems. More-
over, it is consistent with the deviations of magnitude values. The
proposed distance measure effectively overcame the maximum dis-
tance problem using the measures by Li and Zeng [32] and Zeng
et al. [33], the transitivity problem using the measures by Zhang
and Xu [5], and the great disparities problem using the measures
by Li and Zeng [32] and Zeng et al. [33] (2) This paper improved
the PF-TOPSIS methodology substantial. For the PFPIS and the
PFNIS, we compared the existing magnitude comparison methods
and selected the scalar function that fully reflects the characteris-
tics of the PFNs. Then, we applied the novel distance measurement
method to calculate the distances from the PFPIS and the PFNIS,
which has been demonstrated to be more effective and accurate.
(3) This paper proposed the more practical and precise PF-TOPSIS
approach for addressing MCDM problems. Due to the full consid-
eration of the properties and characteristics of PF sets, the scalar
type PF-TOPSIS approach could handle theMCDMproblemsmore
effectively and precisely under the PF environment compared to
the classical type, the fixed type, and the scored type PF-TOPSIS
approaches.

This study utilized sin
(
𝜃p
)
to represent the radian of commitment;

however, we haven’t determined whether cos
(
𝜃p
)
serves the same

function as sin
(
𝜃p
)
in distance measure for PFNs. Moreover, we

haven’t applied the Euclidean distance measure or the generalized
distancemeasure to PF-TOPSIS forMCDMproblems. In the future,
we can draw on the experience of the distance measure of IF sets
by quaternary functions [30] to explore new properties of PFNs.
We should compare the differences between cos

(
𝜃p
)
and sin

(
𝜃p
)

in distance measures for PFNs, then apply the other two distance
measurementmethods in PF-TOPSIS to evaluate their effectiveness
and feasibility for MCDM problems.
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