@inproceedings{kundu-etal-2019-exploiting,
title = "Exploiting Explicit Paths for Multi-hop Reading Comprehension",
author = "Kundu, Souvik and
Khot, Tushar and
Sabharwal, Ashish and
Clark, Peter",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1263",
doi = "10.18653/v1/P19-1263",
pages = "2737--2747",
abstract = "We propose a novel, path-based reasoning approach for the multi-hop reading comprehension task where a system needs to combine facts from multiple passages to answer a question. Although inspired by multi-hop reasoning over knowledge graphs, our proposed approach operates directly over unstructured text. It generates potential paths through passages and scores them without any direct path supervision. The proposed model, named PathNet, attempts to extract implicit relations from text through entity pair representations, and compose them to encode each path. To capture additional context, PathNet also composes the passage representations along each path to compute a passage-based representation. Unlike previous approaches, our model is then able to explain its reasoning via these explicit paths through the passages. We show that our approach outperforms prior models on the multi-hop Wikihop dataset, and also can be generalized to apply to the OpenBookQA dataset, matching state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kundu-etal-2019-exploiting">
<titleInfo>
<title>Exploiting Explicit Paths for Multi-hop Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Souvik</namePart>
<namePart type="family">Kundu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tushar</namePart>
<namePart type="family">Khot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Sabharwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel, path-based reasoning approach for the multi-hop reading comprehension task where a system needs to combine facts from multiple passages to answer a question. Although inspired by multi-hop reasoning over knowledge graphs, our proposed approach operates directly over unstructured text. It generates potential paths through passages and scores them without any direct path supervision. The proposed model, named PathNet, attempts to extract implicit relations from text through entity pair representations, and compose them to encode each path. To capture additional context, PathNet also composes the passage representations along each path to compute a passage-based representation. Unlike previous approaches, our model is then able to explain its reasoning via these explicit paths through the passages. We show that our approach outperforms prior models on the multi-hop Wikihop dataset, and also can be generalized to apply to the OpenBookQA dataset, matching state-of-the-art performance.</abstract>
<identifier type="citekey">kundu-etal-2019-exploiting</identifier>
<identifier type="doi">10.18653/v1/P19-1263</identifier>
<location>
<url>https://aclanthology.org/P19-1263</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2737</start>
<end>2747</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Explicit Paths for Multi-hop Reading Comprehension
%A Kundu, Souvik
%A Khot, Tushar
%A Sabharwal, Ashish
%A Clark, Peter
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F kundu-etal-2019-exploiting
%X We propose a novel, path-based reasoning approach for the multi-hop reading comprehension task where a system needs to combine facts from multiple passages to answer a question. Although inspired by multi-hop reasoning over knowledge graphs, our proposed approach operates directly over unstructured text. It generates potential paths through passages and scores them without any direct path supervision. The proposed model, named PathNet, attempts to extract implicit relations from text through entity pair representations, and compose them to encode each path. To capture additional context, PathNet also composes the passage representations along each path to compute a passage-based representation. Unlike previous approaches, our model is then able to explain its reasoning via these explicit paths through the passages. We show that our approach outperforms prior models on the multi-hop Wikihop dataset, and also can be generalized to apply to the OpenBookQA dataset, matching state-of-the-art performance.
%R 10.18653/v1/P19-1263
%U https://aclanthology.org/P19-1263
%U https://doi.org/10.18653/v1/P19-1263
%P 2737-2747
Markdown (Informal)
[Exploiting Explicit Paths for Multi-hop Reading Comprehension](https://aclanthology.org/P19-1263) (Kundu et al., ACL 2019)
ACL