@inproceedings{hou-2018-deterministic,
title = "A Deterministic Algorithm for Bridging Anaphora Resolution",
author = "Hou, Yufang",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1219",
doi = "10.18653/v1/D18-1219",
pages = "1938--1948",
abstract = "Previous work on bridging anaphora resolution (Poesio et al., 2004; Hou et al., 2013) use syntactic preposition patterns to calculate word relatedness. However, such patterns only consider NPs{'} head nouns and hence do not fully capture the semantics of NPs. Recently, Hou (2018) created word embeddings (embeddings{\_}PP) to capture associative similarity (i.e., relatedness) between nouns by exploring the syntactic structure of noun phrases. But embeddings{\_}PP only contains word representations for nouns. In this paper, we create new word vectors by combining embeddings{\_}PP with GloVe. This new word embeddings (embeddings{\_}bridging) are a more general lexical knowledge resource for bridging and allow us to represent the meaning of an NP beyond its head easily. We therefore develop a deterministic approach for bridging anaphora resolution, which represents the semantics of an NP based on its head noun and modifications. We show that this simple approach achieves the competitive results compared to the best system in Hou et al. (2013) which explores Markov Logic Networks to model the problem. Additionally, we further improve the results for bridging anaphora resolution reported in Hou (2018) by combining our simple deterministic approach with Hou et al. (2013){'}s best system MLN II.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hou-2018-deterministic">
<titleInfo>
<title>A Deterministic Algorithm for Bridging Anaphora Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work on bridging anaphora resolution (Poesio et al., 2004; Hou et al., 2013) use syntactic preposition patterns to calculate word relatedness. However, such patterns only consider NPs’ head nouns and hence do not fully capture the semantics of NPs. Recently, Hou (2018) created word embeddings (embeddings_PP) to capture associative similarity (i.e., relatedness) between nouns by exploring the syntactic structure of noun phrases. But embeddings_PP only contains word representations for nouns. In this paper, we create new word vectors by combining embeddings_PP with GloVe. This new word embeddings (embeddings_bridging) are a more general lexical knowledge resource for bridging and allow us to represent the meaning of an NP beyond its head easily. We therefore develop a deterministic approach for bridging anaphora resolution, which represents the semantics of an NP based on its head noun and modifications. We show that this simple approach achieves the competitive results compared to the best system in Hou et al. (2013) which explores Markov Logic Networks to model the problem. Additionally, we further improve the results for bridging anaphora resolution reported in Hou (2018) by combining our simple deterministic approach with Hou et al. (2013)’s best system MLN II.</abstract>
<identifier type="citekey">hou-2018-deterministic</identifier>
<identifier type="doi">10.18653/v1/D18-1219</identifier>
<location>
<url>https://aclanthology.org/D18-1219</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>1938</start>
<end>1948</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Deterministic Algorithm for Bridging Anaphora Resolution
%A Hou, Yufang
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F hou-2018-deterministic
%X Previous work on bridging anaphora resolution (Poesio et al., 2004; Hou et al., 2013) use syntactic preposition patterns to calculate word relatedness. However, such patterns only consider NPs’ head nouns and hence do not fully capture the semantics of NPs. Recently, Hou (2018) created word embeddings (embeddings_PP) to capture associative similarity (i.e., relatedness) between nouns by exploring the syntactic structure of noun phrases. But embeddings_PP only contains word representations for nouns. In this paper, we create new word vectors by combining embeddings_PP with GloVe. This new word embeddings (embeddings_bridging) are a more general lexical knowledge resource for bridging and allow us to represent the meaning of an NP beyond its head easily. We therefore develop a deterministic approach for bridging anaphora resolution, which represents the semantics of an NP based on its head noun and modifications. We show that this simple approach achieves the competitive results compared to the best system in Hou et al. (2013) which explores Markov Logic Networks to model the problem. Additionally, we further improve the results for bridging anaphora resolution reported in Hou (2018) by combining our simple deterministic approach with Hou et al. (2013)’s best system MLN II.
%R 10.18653/v1/D18-1219
%U https://aclanthology.org/D18-1219
%U https://doi.org/10.18653/v1/D18-1219
%P 1938-1948
Markdown (Informal)
[A Deterministic Algorithm for Bridging Anaphora Resolution](https://aclanthology.org/D18-1219) (Hou, EMNLP 2018)
ACL