Skip to main content
Log in

On the maximum TSP with γ-parameterized triangle inequality

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The maximum TSP with γ-parameterized triangle inequality is defined as follows. Given a complete graph G = (V, E, w) in which the edge weights satisfy w(uv) ≤ γ · (w(ux) + w(xv)) for all distinct nodes \({u,x,v \in V}\), find a tour with maximum weight that visits each node exactly once. Recently, Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) proposed a \({\frac{\gamma+1}{3\gamma}}\)-approximation algorithm for \({\gamma\in\left[\frac{1}{2},1\right)}\). In this paper, we show that the approximation ratio of Kostochka and Serdyukov’s algorithm (Upravlyaemye Sistemy 26:55–59, 1985) is \({\frac{4\gamma+1}{6\gamma}}\), and the expected approximation ratio of Hassin and Rubinstein’s randomized algorithm (Inf Process Lett 81(5):247–251, 2002) is \({\frac{3\gamma+\frac{1}{2}}{4\gamma}-O\left(\frac{1}{\sqrt{n}}\right)}\), for \({\gamma\in\left[\frac{1}{2},+\infty\right)}\). These improve the result in Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) and generalize the results in Hassin and Rubinstein and Kostochka and Serdyukov (Inf Process Lett 81(5):247–251, 2002; Upravlyaemye Sistemy 26:55–59, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Z.-Z., Nagoya T.: Improved approximation algorithms for metric max TSP. J. Comb. Optim. 13(4), 321–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Z.-Z., Okamoto Y., Wang L.: Improved deterministic approximation algorithms for Max TSP. Inf. Process. Lett. 95(2), 333–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fisher M.L., Nemhauser G.L., Wolsey L.A.: An analysis of approximation for finding a maximum weight Hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Floudas, C.A., Pardalos, P.M.: Encyclopedia of optimization, 2nd edn. Springer (2009)

  5. Hartvigsen, D.: Extensions of matching theory. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA (1984)

  6. Hassin R., Rubinstein S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hassin R., Rubinstein S.: Better approximations for max TSP. Inf. Process. Lett 75(4), 181–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kostochka A.V., Serdyukov A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)

    MathSciNet  Google Scholar 

  9. Kowalik, L., Mucha, M.: 35/44-Approximation for asymmetric maximum TSP with triangle inequality. Algorithmica. doi:10.1007/s00453-009-9306-3

  10. Kowalik L., Mucha M.: Deterministic 7/8-approximation for the metric maximum TSP. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Paluch K., Mucha M., Madry A.: A 7/9 approximation algorithm for the maximum traveling salesman problem. Lect. Notes Comput. Sci. 5687, 298–311 (2009)

    Article  MathSciNet  Google Scholar 

  12. Pardalos, P.M., Du, D.: Handbook of Combinatorial Optimization. Kluwer Academic Publishers. Volumes 1, 2, and 3 (1998), Supplement Volume A (1999), Supplement Volume B (2001)

  13. Serdyukov A.I.: The traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Zhang T., Yin Y., Li J.: An improved approximation algorithm for the maximum TSP. Theor. Comput. Sci. 411(26–28), 2537–2541 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Shi, Y. On the maximum TSP with γ-parameterized triangle inequality. Optim Lett 6, 415–420 (2012). https://doi.org/10.1007/s11590-010-0266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0266-y

Keywords

Navigation