Abstract
The maximum TSP with γ-parameterized triangle inequality is defined as follows. Given a complete graph G = (V, E, w) in which the edge weights satisfy w(uv) ≤ γ · (w(ux) + w(xv)) for all distinct nodes \({u,x,v \in V}\), find a tour with maximum weight that visits each node exactly once. Recently, Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) proposed a \({\frac{\gamma+1}{3\gamma}}\)-approximation algorithm for \({\gamma\in\left[\frac{1}{2},1\right)}\). In this paper, we show that the approximation ratio of Kostochka and Serdyukov’s algorithm (Upravlyaemye Sistemy 26:55–59, 1985) is \({\frac{4\gamma+1}{6\gamma}}\), and the expected approximation ratio of Hassin and Rubinstein’s randomized algorithm (Inf Process Lett 81(5):247–251, 2002) is \({\frac{3\gamma+\frac{1}{2}}{4\gamma}-O\left(\frac{1}{\sqrt{n}}\right)}\), for \({\gamma\in\left[\frac{1}{2},+\infty\right)}\). These improve the result in Zhang et al. (Theor Comput Sci 411(26–28):2537–2541, 2010) and generalize the results in Hassin and Rubinstein and Kostochka and Serdyukov (Inf Process Lett 81(5):247–251, 2002; Upravlyaemye Sistemy 26:55–59, 1985).
Similar content being viewed by others
References
Chen Z.-Z., Nagoya T.: Improved approximation algorithms for metric max TSP. J. Comb. Optim. 13(4), 321–336 (2007)
Chen Z.-Z., Okamoto Y., Wang L.: Improved deterministic approximation algorithms for Max TSP. Inf. Process. Lett. 95(2), 333–342 (2005)
Fisher M.L., Nemhauser G.L., Wolsey L.A.: An analysis of approximation for finding a maximum weight Hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)
Floudas, C.A., Pardalos, P.M.: Encyclopedia of optimization, 2nd edn. Springer (2009)
Hartvigsen, D.: Extensions of matching theory. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA (1984)
Hassin R., Rubinstein S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)
Hassin R., Rubinstein S.: Better approximations for max TSP. Inf. Process. Lett 75(4), 181–186 (2000)
Kostochka A.V., Serdyukov A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)
Kowalik, L., Mucha, M.: 35/44-Approximation for asymmetric maximum TSP with triangle inequality. Algorithmica. doi:10.1007/s00453-009-9306-3
Kowalik L., Mucha M.: Deterministic 7/8-approximation for the metric maximum TSP. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)
Paluch K., Mucha M., Madry A.: A 7/9 approximation algorithm for the maximum traveling salesman problem. Lect. Notes Comput. Sci. 5687, 298–311 (2009)
Pardalos, P.M., Du, D.: Handbook of Combinatorial Optimization. Kluwer Academic Publishers. Volumes 1, 2, and 3 (1998), Supplement Volume A (1999), Supplement Volume B (2001)
Serdyukov A.I.: The traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)
Zhang T., Yin Y., Li J.: An improved approximation algorithm for the maximum TSP. Theor. Comput. Sci. 411(26–28), 2537–2541 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, W., Shi, Y. On the maximum TSP with γ-parameterized triangle inequality. Optim Lett 6, 415–420 (2012). https://doi.org/10.1007/s11590-010-0266-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-010-0266-y