Abstract
Software intelligent development has become one of the most important research trends in software engineering. In this paper, we put forward two key concepts — intelligent development environment (IntelliDE) and software knowledge graph — for the first time. IntelliDE is an ecosystem in which software big data are aggregated, mined and analyzed to provide intelligent assistance in the life cycle of software development. We present its architecture and discuss its key research issues and challenges. Software knowledge graph is a software knowledge representation and management framework, which plays an important role in IntelliDE. We study its concept and introduce some concrete details and examples to show how it could be constructed and leveraged.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kaiser G E, Feiler P H, Popovich S S. Intelligent assistance for software development and maintenance. IEEE Software, 1988, 5(3): 40-49.
Robillard M, Walker R, Zimmermann T. Recommendation systems for software engineering. IEEE Software, 2010, 27(4): 80-86.
Raychev V, Vechev M, Yahav E. Code completion with statistical language models. ACM SIGPLAN Notices, 2014, 49(6): 419-428.
Shepperd M, Bowes D, Hall T. Researcher bias: The use of machine learning in software defect prediction. IEEE Transactions on Software Engineering, 2014, 40(6): 603-616.
Ye X, Bunescu R, Liu C. Learning to rank relevant files for bug reports using domain knowledge. In Proc. the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, Nov. 2014, pp.689-699.
Trautsch F, Herbold S, Makedonski P, Grabowski J. Adressing problems with external validity of repository mining studies through a smart data platform. In Proc. the 13th International Conference on Mining Software Repositories, May 2016, pp.97-108.
Liu Q, Li Y, Duan H, Liu Y, Qin Z G. Knowledge graph construction techniques. Journal of Computer Research and Development, 2016, 53(3): 582-600. (in Chinese)
Dagenais B, RobillardMP. Recovering traceability links between an API and its learning resources. In Proc. the 34th International Conference on Software Engineering, June 2012, pp.47-57.
Ye X, Shen H, Ma X, Bunescu R, Liu C. From word embeddings to document similarities for improved information retrieval in software engineering. In Proc. the 38th International Conference on Software Engineering, May 2016, pp.404-415.
Hua Z B, Li M, Zhao J F, Zou Y Z, Xie B, Li C. Code function mining tool based on topic modeling technology. Computer Science, 2014, 41(9): 52-59. (in Chinese)
Wang L J, Fang L, Wang L Y, Li G, Xie B, Yang F Q. APIExample: An effective web search based usage example recommendation system for Java APIs. In Proc. the 26th IEEE/ACM International Conference on Automated Software Engineering, Nov. 2011, pp.592-595.
Marcus A, Antoniol G. On the use of text retrieval techniques in software engineering. In Proc. the 34th IEEE/ACM International Conference on Software Engineering, Technical Briefing, June 2012.
Chan W K, Cheng H, Lo D. Searching connected API sub-graph via text phrases. In Proc. the 20th ACM SIGSOFT International Symposium on the Foundations of Software Engineering, Nov. 2012, Article No. 10.
Mcmillan C, Poshyvanyk D, Grechanik M, Xie Q, Fu C. Portfolio: Searching for relevant functions and their usages in millions of lines of code. ACM Transactions on Software Engineering and Methodology, 2013, 22(4): Article No. 37.
Marcus A, Sergeyev A, Rajlich V, Maletic J I. An information retrieval approach to concept location in source code. In Proc. the 11th Working Conference on Reverse Engineering, Nov. 2004, pp.214-223.
Lin Y K, Liu Z Y, Sun M S, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In Proc. the 29th AAAI Conference on Artificial Intelligence, Jan. 2015, pp.2181-2187.
Schuhmacher M, Ponzetto S P. Knowledge-based graph document modeling. In Proc. the 7th ACM International Conference on Web Search and Data Mining, Feb. 2014, pp.543-552.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 308 kb)
Rights and permissions
About this article
Cite this article
Lin, ZQ., Xie, B., Zou, YZ. et al. Intelligent Development Environment and Software Knowledge Graph. J. Comput. Sci. Technol. 32, 242–249 (2017). https://doi.org/10.1007/s11390-017-1718-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-017-1718-y