Skip to main content
Log in

Turbo coding for the noisy 2-user binary adder channel with punctured convolutional codes

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper investigates the use of punctured recursive systematic convolutional codes for turbo coding in a 2-user binary adder channel (2-BAC) in the presence of additive white Gaussian noise, aiming to achieve a higher transmission sum rate with reduced decoding complexity. The encoders for the 2-BAC are assumed to be block synchronized and to employ identical puncturing patterns. Iterative decoding combining the Bahl Cocke Jelinek Raviv algorithm and a two-user punctured trellis is employed. For each user and for a fixed puncturing pattern, random interleavers of length 256 bits or 1024 bits, respectively, are simulated and corresponding curves relating bit error rate versus signal to noise ratio are presented for performance comparison purposes. Computer simulation indicates that the loss in performance of a punctured turbo code can be negligible when longer interleavers are used for both users, similarly to the single user case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kasami, T., & Lin, S. (1976). Coding for a multiple-access channel. IEEE Transactions on Information Theory, 2(22), 129–137.

    Article  Google Scholar 

  2. Cain, J. B., Clark, G. C, Jr., & Geist, J. M. (1979). Punctured convolutional codes of rate \((n-1)/n\) and simplified maximum likelihood decoding. IEEE Transactions on Information Theory, 25(1), 97–100.

    Article  Google Scholar 

  3. Wicker, S. B. (1995). Error control systems for digital communication and storage. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  4. Bisla, J. K., Dhillon, N., & Sharma, K. (2014). Performance evaluation of punctured convolutional codes for OFDM-WiMAX system. International Journal of Electronics and Electrical Engineering, 2(3), 142–148.

    Google Scholar 

  5. Mattas, M., & Ostergard, P. R. J. (2005). A new bound for the zero-error capacity region of the two-user binary adder channel. IEEE Transactions on Information Theory, 51, 3289–3291.

    Article  Google Scholar 

  6. Kiviluoto, L., & Ostergard, P. R. J. (2007). New uniquely decodable codes for the t-user binary adder channel with \(3 \le t \le 5\). IEEE Transactions on Information Theory, 53, 1219–1220.

    Article  Google Scholar 

  7. Roumy, A., & Declerq, D. (2007). Characterization and optimization of LDPC codes for the 2-user Gaussian multiple access channel. EURASIP Journal on Wireless Communications and Networking, 2007, 1–10.

    Article  Google Scholar 

  8. Beltrão Neto, H. V., & da Rocha Jr., V. C. (2009). Iterative decoding results for the Gaussian multiuser binary adder channel. In Proceedings of tenth international symposium on communication theory and applications (pp. 1–6).

  9. Wang, G., Land, I., & Grant, A. (2012). Irregular repeat accumulate codes with few iterations for the binary adder channel. In Proceedings of 7th international symposium on turbo codes and iterative information processing (ISTC 2012) (pp. 215–219).

  10. Lu, S., Cheng, J., & Hou, W., et al. (2013). Generalized construction of signature code for multiple-access adder channel. In Proceedings of IEEE international symposium on information theory (ISIT 2013) (pp. 1655–1659).

  11. Matsuda, H. (2013). Coding for a noisy binary multiple-access adder channel. American Journal of Computational and Applied Mathematics, 3(1), 23–25.

    Google Scholar 

  12. Alcoforado, M. L. M. G., Oliveira, M. C. C., & da Rocha, V. C, Jr. (2015). The Bahl-Cocke-Jelinek-Raviv decoding algorithm applied to the three-user binary adder channel. IET Communications, 9(7), 897–902.

    Article  Google Scholar 

  13. Bahl, L. R., Cocke, J., Jelinek, F., et al. (1974). Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, 2(20), 284–287.

    Article  Google Scholar 

  14. Khalid, A., Khan, E., Adebisi, B., et al. (2015). Image transmission using unequal error protected multi-fold turbo codes over a two-user power-line binary adder channel. IET Image Processing, 9(5), 395–404.

    Article  Google Scholar 

  15. Peterson, R., & Costello, D. J, Jr. (1979). Binary convolutional codes for a multiple-access channel. IEEE Transactions on Information Theory, 25(1), 101–105.

    Article  Google Scholar 

  16. Alcoforado, M. L. M. G., da Rocha, V. C, Jr., Markarian, G., et al. (2011). Iterative decoding of turbo convolutional codes over noisy two-user binary adder channel. Electronics Letters, 13(47), 749–751.

    Article  Google Scholar 

  17. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit, error-correcting coding and decoding: turbo codes. In Proceedings of IEEE international conference on communications, (ICC’93), 2/3 (pp. 1064–1071).

  18. Alcoforado, M. L. M. G., & da Rocha, V. C, Jr. (2010). The Bahl-Cocke-Jelinek-Raviv algorithm applied to the two user binary adder channel. Journal of Communication and Information Systems, 25, 30–35.

    Article  Google Scholar 

  19. Heegard, C., & Wicker, S. (1999). Turbo coding. Berlin: Kluwer Academic Publishers.

    Book  Google Scholar 

Download references

Acknowledgments

V. C. da Rocha Jr. acknowledges partial support from the Brazilian National Council for Scientific and Technological Development - CNPq under grant number 304696/2010-2. The authors are grateful to the reviewers for their comments and suggestions which helped improving the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes M. G. Alcoforado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcoforado, M.d.L.M.G., de Jesus, J.J.C.B. & da Rocha, V.C. Turbo coding for the noisy 2-user binary adder channel with punctured convolutional codes. Telecommun Syst 64, 459–465 (2017). https://doi.org/10.1007/s11235-016-0185-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0185-z

Keywords

Navigation