Abstract
The size of quantum circuits is growing as quantum computing develops, yet the devices available today cannot handle the large-scale quantum computing problems. Distributed quantum computing is an effective way to solve this problem. How to efficiently reduce the transmission cost of distributed quantum circuits is crucial because it serves as a fundamental standard of the effectiveness of distributed quantum computing. To this end, this research suggests a distributed storage pattern and a merged transfer model. Based on this distributed storage pattern, the quantum circuit matches the appropriate architecture for distribution, and the circuit is initially partitioned. To determine the most effective partitioning scheme for the circuits, a genetic algorithm is employed to reorder qubits and partition distributed circuits. Based on the merged transfer model, the exchange rules of quantum gates are used to combine a number of discontinuous gates into a single transmission through which these gates can be executed. The merged transfer model completes execution with fewer redundant transmissions, so as to achieve a lower transmission cost overall. The method proposed in this paper takes up fewer quantum resources and has a lower transmission cost than previous research results, with an average transmission cost optimization of 51.3%.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data that support the findings of this study are available from https://github.com/cxygiao/DQC.
References
Jaeger, G.: Quantum Information. Springer, Berlin (2007)
Buhrman, H., Röhrig, H.: Distributed quantum computing. In: International Symposium on Mathematical Foundations of Computer Science, pages 1–20. Springer (2003)
Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Stather, M.: Efficient distributed quantum computing. Proc. Royal Soc. A Math. Phys. Eng. Sci. 469(2153), 20120686 (2013)
Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum circuits on a small quantum computer. Phys. Rev. Lett. 125(15), 150504 (2020)
Tang, W., Tomesh, T., Suchara, M., Larson, J., Martonosi, M.: Cutqc: using small quantum computers for large quantum circuit evaluations. In: Proceedings of the 26th ACM International conference on architectural support for programming languages and operating systems, pp. 473-486. (2021)
Chou, K.S., Blumoff, J.Z., Wang, C.S., Reinhold, P.C., Axline, C.J., Gao, Y.Y., Schoelkopf, R.J.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368–373 (2018)
Wan, Y., Kienzler, D., Erickson, S.D., Mayer, K.H., Tan, T.R., Wu, J.J., Leibfried, D.: Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364(6443), 875–878 (2019)
Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. photon. 9(10), 641–652 (2015)
Langenfeld, Stefan, Welte, Stephan, Hartung, Lukas, Daiss, Severin, Thomas, Philip, Morin, Olivier, Distante, Emanuele, Rempe, Gerhard: Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126(13), 130502 (2021)
Strauch, F.W., Williams, C.J.: Theoretical analysis of perfect quantum state transfer with superconducting qubits. Phys. Rev. B 78(9), 094516 (2008)
Foxen, B., Mutus, J.Y., Lucero, E., Graff, R., Megrant, A., Yu Chen, C., Quintana, B Burkett, Kelly, J., Jeffrey, E., et al.: Qubit compatible superconducting interconnects. Quant. Sci. Technol. 3(1), 014005 (2017)
Youssefi, A., Shomroni, I., Joshi, Y.J., Bernier, N.R., Lukashchuk, A., Uhrich, P., Kippenberg, T.J.: A cryogenic electro-optic interconnect for superconducting devices. Nat. Electr. 4(5), 326–332 (2021)
Gold, A., Paquette, J.P., Stockklauser, A., Reagor, M.J., Alam, M.S., Bestwick, A., Rigetti, C.: Entanglement across separate silicon dies in a modular superconducting qubit device. NPJ Quant. Inform. 7(1), 142 (2021)
Awschalom, D., Berggren, K.K., Bernien, H., Bhave, S., Carr, L.D., Davids, P., Zhang, Z.: Development of quantum interconnects (quics) for next-generation information technologies. PRX Quant. 2(1), 017002 (2021)
Gambetta, J.: Expanding the ibm quantum roadmap to anticipate the future of quantum-centric supercomputing. Website, 2022. https://research.ibm.com/blog/ibm-quantum-roadmap-2025
Moghadam, M.C., Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: A hierarchical layout generation method for quantum circuits. In: The 17th CSI International Symposium on Computer Architecture and Digital Systems (CADS 2013), pp. 51-57. IEEE (2013)
Sargaran, Sahar, Mohammadzadeh, Naser: Saqip: a scalable architecture for quantum information processors. ACM Trans. Archit. Code Optim. (TACO) 16(2), 1–21 (2019)
G Sundaram, R., Gupta, H., Ramakrishnan, C.R.: Efficient distribution of quantum circuits. In: 35th International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik. (2021)
Davarzani, Zohreh, Zomorodi-Moghadam, Mariam, Houshmand, Mahboobeh, Nouri-baygi, Mostafa: A dynamic programming approach for distributing quantum circuits by bipartite graphs. Quantum Inf. Process. 19(10), 1–18 (2020)
Dadkhah, D., Zomorodi, M., Hosseini, S.E., Plawiak, P., Zhou, X.: Reordering and partitioning of distributed quantum circuits. IEEE Access 10, 70329–70341 (2022)
Davarzani, Zohreh, Zomorodi, Mariam, Houshmand, Mahboobeh: A hierarchical approach for building distributed quantum systems. Sci. Rep. 12(1), 15421 (2022)
Houshmand, Mahboobeh, Mohammadi, Zahra, Zomorodi-Moghadam, Mariam, Houshmand, Monireh: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59(4), 1315–1329 (2020)
Daei, Omid, Navi, Keivan, Zomorodi, Mariam: Improving the teleportation cost in distributed quantum circuits based on commuting of gates. Int. J. Theor. Phys. 60(9), 3494–3513 (2021)
Ghodsollahee, Ismail, Davarzani, Zohreh, Zomorodi, Mariam, Pławiak, Paweł, Houshmand, Monireh, Houshmand, Mahboobeh: Connectivity matrix model of quantum circuits and its application to distributed quantum circuit optimization. Quantum Inf. Process. 20(7), 1–21 (2021)
Wu, A., Zhang, H., Li, G., Shabani, A., Xie, Y., Ding, Y.: AutoComm: a Framework for Enabling Efficient Communication in Distributed Quantum Programs. In: 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1027-1041. IEEE (2022)
Cuomo, D., Caleffi, M., Krsulich, K., Tramonto, F., Agliardi, G., Prati, E., Cacciapuoti, A.S.: Optimized compiler for distributed quantum computing. arXiv preprint arXiv:2112.14139, (2021)
Li, Zhiqiang, Chen, Sai, Song, Xiaoyu, Perkowski, Marek, Chen, Hanwu, Zhu, Wei: Quantum circuit synthesis using a new quantum logic gate library of NCV quantum gates. Int. J. Theor. Phys. 56(4), 1023–1038 (2017)
Miller, D.M., Soeken, M., Drechsler, R.: Mapping ncv circuits to optimized clifford+t circuits. In: International Conference on Reversible Computation, pages 163–175. Springer (2014)
Zhu, Mingqiang, Cheng, Xueyun, Zhu, Pengcheng, Chen, Liang, Guan, Zhijin: Physical constraint-aware Cnot quantum circuit synthesis and optimization. Quantum Inf. Process. 22(1), 1–19 (2023)
Cheng, Xueyun, Guan, Zhijin, Zhu, Pengcheng: Nearest neighbor transformation of quantum circuits in 2d architecture. IEEE Access 8, 222466–222475 (2020)
Zhu, Pengcheng, Guan, Zhijin, Cheng, Xueyun: A dynamic look-ahead heuristic for the qubit mapping problem of NISG computers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(12), 4721–4735 (2020)
Bao, Xiao-Hui., Xiao-Fan, Xu., Li, Che-Ming., Yuan, Zhen-Sheng., Chao-Yang, Lu., Pan, Jian-Wei.: Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl. Acad. Sci. 109(50), 20347–20351 (2012)
Chatterjee, T., Das, A., Mohtashim, S.I., Saha, A., Chakrabarti, A.: Qurzon: a Prototype for a Divide and Conquer-Based Quantum Compiler for Distributed Quantum Systems. SN Comput. Sci. 3(4), 323 (2022)
Dadkhah, D., Zomorodi, M., Hosseini, S.E.: A new approach for optimization of distributed quantum circuits. Int. J. Theor. Phys. 60, 3271–3285 (2021)
Sarvaghad-Moghaddam, Moein, Zomorodi, Mariam: A general protocol for distributed quantum gates. Quantum Inf. Process. 20(8), 1–14 (2021)
Ferrari, D., Cacciapuoti, A.S., Amoretti, M., Caleffi, M.: Compiler design for distributed quantum computing. arXiv preprint arXiv:2012.09680, 2020
Kurpiers, P., Magnard, P., Walter, T., Royer, B., Pechal, M., Heinsoo, J., Wallraff, A.: Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558(7709), 264–267 (2018)
Magnard, P., Storz, S., Kurpiers, P., Schar, J., Marxer, F., Lutolf, J., Wallraff, A.: Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125(26), 260502 (2020)
Zhong, Y., Chang, H.S., Bienfait, A., Dumur, E., Chou, M.H., Conner, C.R., Cleland, A.N.: Deterministic multi-qubit entanglement in a quantum network. Nature 590(7847), 571–575 (2021)
Leung, N., Lu, Y., Chakram, S., Naik, R.K., Earnest, N., Ma, R., Schuster, D.I.: Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. NPJ Quantum Inform. 5(1), 18 (2019)
Qasymeh, Montasir, Eleuch, Hichem: High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide. Sci. Rep. 12(1), 1–12 (2022)
Penas, G.F., Puebla, R., Ramos, T., Rabl, P., Garcia-Ripoll, J.J.: Universal deterministic quantum operations in microwave quantum links. Phys. Rev. Appl. 17(5), 054038 (2022)
Nicholas LaRacuente, Kaitlin N Smith, Poolad Imany, Kevin L Silverman, and Frederic T Chong. Short-range microwave networks to scale superconducting quantum computation. arXiv preprint arXiv:2201.08825, 2022
Smith, K.N., Ravi, G.S., Baker, J.M., Chong, F.T.: Scaling Superconducting Quantum Computers with Chiplet Architectures. In: 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1092-1109. IEEE (2022)
Baheri, B., Guan, Q., Xu, S., Chaudhary, V.: SQCC: Smart Quantum Circuit Cutting. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 614-615. IEEE (2022)
Chitambar, Eric, Gour, Gilad: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)
IBM Quantum. Ibm quantum compute resources. Website, 2022. https://quantum-computing.ibm.com/services/resources?tab=systems
Andreev, K., Racke, H.: Balanced graph partitioning. In: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 120-124. (2004)
Kumar, M., Husain, D., Upreti, N., Gupta, D.: Genetic algorithm: review and application. Avail. at SSRN 3529843 (2010)
Kumar, Rakesh, Gopal, Girdhar, Kumar, Rajesh: Novel crossover operator for genetic algorithm for permutation problems. Int. J. Soft Comput. Eng. (IJSCE) 3(2), 252–258 (2013)
Jozsa, Richard: Illustrating the concept of quantum information. IBM J. Res. Dev. 48(1), 79–85 (2004)
Hua-Yun, C.H.E.N.G.: Optimized simplification algorithm for reversible MCT circuits. Chin. J. Quantum Electr. 34(6), 713 (2017)
RevLib. An online resource for reversible functions and circuits. Website, 2022. http://www.informatik.uni-bremen.de/rev_lib/
Rahman, M.Z., Rice, J.E.: Templates for positive and negative control toffoli networks. In: International Conference on Reversible Computation, pages 125–136. Springer (2014)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work was supported by the National Natural Science Foundation of China under Grant number 62072259, in part by the Natural Science Foundation of Jiangsu Province under Grant number BK20221411, in part by the PhD Start-up Fund of Nantong University under Grant number 23B03, and in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant number SJCX21-1448.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheng, X., Chen, X., Cao, K. et al. Optimization of the transmission cost of distributed quantum circuits based on merged transfer. Quantum Inf Process 22, 187 (2023). https://doi.org/10.1007/s11128-023-03927-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-03927-0