Abstract
Low-cost low-margin implementation plays an essential role in upgrading optical metro networks required for future 5G ecosystem. In this regard, low-resolution analog-to-digital converters can be used in coherent optical transponders to reduce cost and power consumption. However, the resulting transmission systems become more sensitive to physical layer fluctuations like the events caused by fiber stressing. Such fluctuations might have a strong impact on the quality of transmission (QoT) of the signals. To guarantee robust operation, soft decision forward error correction (FEC) techniques are required to guarantee zero post-FEC bit error rate (BER) transmission, which could increase the power consumption of the receiver and thus operational expenses. In this paper, we aim at minimizing power consumption while keeping zero post-FEC errors by means of a predictive autonomic transmission agent (ATA) based on machine learning. We present a sophisticated ATA model that, taking advantage of real-time monitoring of state of polarization traces and the corresponding pre-FEC BER, predicts the right FEC configuration for short-term operation, thus requiring minimum power consumption. In addition, we propose a complementary long-term prediction of excessive pre-FEC BER to enable remote reconfiguration at the transmitter side through the network controller. A set of experimental measurements is used to train and validate the proposed ATA system. Exhaustive numerical analysis allows concluding that ATA based on artificial neural network predictors achieves the maximum QoT robustness with 80% power consumption reductions compared to static FEC configuration.
Similar content being viewed by others
References
Cisco Visual Networking Index: Forecast and Trends, 2017–2022
Pointurier, Y.: Design of low-margin optical networks. IEEE/OSA J. Opt. Commun. Netw. 9, A9–A17 (2017)
Velasco, L., Wright, P., Lord, A., Junyent, G.: Saving CAPEX by extending flexgrid-based core optical networks towards the edges. IEEE/OSA J. Opt. Commun. Netw. (JOCN) 5, A171–A183 (2013)
Kupfer, T., Bisplinghof, A., Duthel, T., Fludger, C., Langenbach, S.: Optimizing power consumption of a coherent DSP for metro and data center interconnects. In: Proceeding of OFC (2017)
Chen, X., Chandrasekhar, S., Randel, S., Gu, W., Winzer P.: Experimental quantification of implementation penalties from limited ADC resolution for nyquist shaped higher-order QAM. In: Proceedings of ECOC (2016)
Dorize, C., Rival, O., Costantini, C.: Power scaling of LDPC decoder stage in long haul networks. In: Proceedings of PS (2012)
Park, J., Chung, K.: An adaptive low-power LDPC decoder using SNR estimation. EURASIP J. Wirel. Commun. Netw. 48, 2–9 (2011)
Auge, J.: Can we use flexible transponders to reduce margins? In: Proceedings of OFC (2013)
Sartzetakis, I., Christodoulopoulos, K., Varvarigos, E.: QoT aware adaptive elastic optical networks. In: Proceedings of OFC (2017)
Vela, A.P., Shariati, B., Ruiz, M., Cugini, F., Castro, A., Lu, H., Proietti, R., Comellas, J., Castoldi, P., Yoo, S.J.B., Velasco, L.: Soft failure localization during commissioning testing and lightpath operation (Invited). IEEE/OSA J. Opt. Commun. Netw. (JOCN) 10, A27–A36 (2018)
Boitier, F., Lemaire, V., Pesic, J., Chavarria, L., Layec, P., Bigo, S., Dutisseuil, E.: Proactive fiber damage detection in real-time coherent receiver. In: Proceedings of ECOC (2017)
Rafique, D., Velasco, L.: Machine learning for optical network automation: overview, architecture and applications. IEEE/OSA J. Opt. Commun. Netw. 10, D126–D143 (2018)
Vela, A.P., Ruiz, M., Velasco, L.: Distributing data analytics for efficient multiple traffic anomalies detection. Elsevier Comput. Commun. 107, 1–12 (2017)
Casellas, R., Martínez, R., Vilalta, R., Muñoz, R.: Control, management and orchestration of optical networks: evolution, trends and challenges. IEEE/OSA J. Lightwave Technol. 36, 1–13 (2018)
Velasco, L., Chiadò Piat, A., González, O., Lord, A., Napoli, A., Layec, P., Rafique, D., D’Errico, A., King, D., Ruiz, M., Cugini, F., Casellas, R.: Monitoring and data analytics for optical networking: benefits, architectures, and use cases. IEEE Netw. Mag. 33, 100–108 (2019)
Velasco, L., Vela, A.P., Morales, F., Ruiz, M.: Designing, operating and re-optimizing elastic optical networks (Invited Tutorial). IEEE/OSA J. Lightwave Technol. (JLT) 35, 513–526 (2017)
Gifre, L., Izquierdo-Zaragoza, J.-L., Ruiz, M., Velasco, L.: Autonomic disaggregated multilayer networking. IEEE/OSA J. Opt. Commun. Netw. (JOCN) 10, 482–492 (2018)
Velasco, L., Gifre, L., Izquierdo-Zaragoza, J.-L., Paolucci, F., Vela, A.P., Sgambelluri, A., Ruiz, M., Cugini, F.: An architecture to support autonomic slice networking (Invited). IEEE/OSA J. Lightwave Technol. 36, 135–141 (2018)
Velasco, L., Sgambelluri, A., Casellas, R., Gifre, L., Izquierdo-Zaragoza, J.-L., Fresi, F., Paolucci, F., Martínez, R., Riccardi, E.: Building autonomic optical whitebox-based networks. IEEE/OSA J. Lightwave Technol. 36, 3097–3104 (2018)
Shariati, B., Boitier, F., Ruiz, M., Layec, P., Velasco, L.: Autonomic transmission through pre-FEC BER degradation prediction based on SOP monitoring. In: Proceedings of European Conference on Optical Communication (ECOC) (2018)
Shariati, B., Ruiz, M., Comellas, J., Velasco, L.: Learning from the optical spectrum: failure detection and identification (Invited). IEEE/OSA J. Lightwave Technol. 37, 433–440 (2019)
Vela, A.P., Ruiz, M., Fresi, F., Sambo, N., Cugini, F., Meloni, G., Potí, L., Velasco, L., Castoldi, P.: BER degradation detection and failure identification in elastic optical networks. IEEE/OSA J. Lightwave Technol. 35, 4595–4604 (2017)
Sanjiban, P., Roy, S., Balas, V.: Handbook of Neural Computation, 1st edn. Elsevier, Amsterdam (2017)
Li, M., Zhang, T., Chen, Y., Smola, A.: Efficient mini-batch training for stochastic optimization. In: Proceedings of ACM KDD (2014)
Sugihara, K., Miyata, Y., Sugihara, T., Kubo, K., Yoshida, H., Matsumoto, W., Mizuochi, T.: A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s. In: Proceedings of OFC (2013)
Rasmussen, A., Yankov, M., Berger, M., Larsen, K., Ruepp, S.: Improved energy efficiency for optical transport networks by elastic forward error correction. IEEE/OSA J. Opt. Commun. Netw. 6, 397–407 (2014)
Velasco, L., Shariati, B., Boitier, F., Layec, P., Ruiz, M.: A learning life-cycle to speed-up autonomic optical transmission and networking adoption. IEEE/OSA J. Opt. Commun. Netw. 11, 226–237 (2019)
Ruiz, M., Tabatabaeimehr, F., Velasco, L.: Knowledge management in optical networks: architecture, methods and use cases (Invited). IEEE/OSA J. Opt. Commun. Netw. 12, A70–A81 (2020)
Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)
Dongsheng, M., Bondade, R.: Enabling power-efficient DVFS operations on silicon. IEEE Circuits Syst. Mag. 10, 14–30 (2010)
Wuttke, J., Krummrich, P.M., Rosch, J.: Polarization oscillations in aerial fiber caused by wind and power-line current. IEEE Photonics Technol. Lett. 15, 882–884 (2003)
AEMET OpenData. https://opendata.aemet.es/. Accessed August 2020
Kupfer, T., Bisplinghof, A., Duthel, T., Fludger, C., Langenbach, S.: Optimizing power consumption of a coherent DSP for metro and data center interconnects. In: Proceedings OFC (2017)
Acknowledgements
The research leading to these results has received funding from the European Commission for the H2020-ICT-2016-2 METRO-HAUL Project (G.A. 761727), from the AEI/FEDER TWINS Project (TEC2017-90097-R) and from the Catalan Institution for Research and Advanced Studies (ICREA).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ruiz, M., Boitier, F., Shariati, B. et al. Predictive autonomic transmission for low-cost low-margin metro optical networks. Photon Netw Commun 40, 68–81 (2020). https://doi.org/10.1007/s11107-020-00909-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-020-00909-5