Skip to main content

Advertisement

Log in

Predictive autonomic transmission for low-cost low-margin metro optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Low-cost low-margin implementation plays an essential role in upgrading optical metro networks required for future 5G ecosystem. In this regard, low-resolution analog-to-digital converters can be used in coherent optical transponders to reduce cost and power consumption. However, the resulting transmission systems become more sensitive to physical layer fluctuations like the events caused by fiber stressing. Such fluctuations might have a strong impact on the quality of transmission (QoT) of the signals. To guarantee robust operation, soft decision forward error correction (FEC) techniques are required to guarantee zero post-FEC bit error rate (BER) transmission, which could increase the power consumption of the receiver and thus operational expenses. In this paper, we aim at minimizing power consumption while keeping zero post-FEC errors by means of a predictive autonomic transmission agent (ATA) based on machine learning. We present a sophisticated ATA model that, taking advantage of real-time monitoring of state of polarization traces and the corresponding pre-FEC BER, predicts the right FEC configuration for short-term operation, thus requiring minimum power consumption. In addition, we propose a complementary long-term prediction of excessive pre-FEC BER to enable remote reconfiguration at the transmitter side through the network controller. A set of experimental measurements is used to train and validate the proposed ATA system. Exhaustive numerical analysis allows concluding that ATA based on artificial neural network predictors achieves the maximum QoT robustness with 80% power consumption reductions compared to static FEC configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cisco Visual Networking Index: Forecast and Trends, 2017–2022

  2. Pointurier, Y.: Design of low-margin optical networks. IEEE/OSA J. Opt. Commun. Netw. 9, A9–A17 (2017)

    Article  Google Scholar 

  3. Velasco, L., Wright, P., Lord, A., Junyent, G.: Saving CAPEX by extending flexgrid-based core optical networks towards the edges. IEEE/OSA J. Opt. Commun. Netw. (JOCN) 5, A171–A183 (2013)

    Article  Google Scholar 

  4. Kupfer, T., Bisplinghof, A., Duthel, T., Fludger, C., Langenbach, S.: Optimizing power consumption of a coherent DSP for metro and data center interconnects. In: Proceeding of OFC (2017)

  5. Chen, X., Chandrasekhar, S., Randel, S., Gu, W., Winzer P.: Experimental quantification of implementation penalties from limited ADC resolution for nyquist shaped higher-order QAM. In: Proceedings of ECOC (2016)

  6. Dorize, C., Rival, O., Costantini, C.: Power scaling of LDPC decoder stage in long haul networks. In: Proceedings of PS (2012)

  7. Park, J., Chung, K.: An adaptive low-power LDPC decoder using SNR estimation. EURASIP J. Wirel. Commun. Netw. 48, 2–9 (2011)

    Google Scholar 

  8. Auge, J.: Can we use flexible transponders to reduce margins? In: Proceedings of OFC (2013)

  9. Sartzetakis, I., Christodoulopoulos, K., Varvarigos, E.: QoT aware adaptive elastic optical networks. In: Proceedings of OFC (2017)

  10. Vela, A.P., Shariati, B., Ruiz, M., Cugini, F., Castro, A., Lu, H., Proietti, R., Comellas, J., Castoldi, P., Yoo, S.J.B., Velasco, L.: Soft failure localization during commissioning testing and lightpath operation (Invited). IEEE/OSA J. Opt. Commun. Netw. (JOCN) 10, A27–A36 (2018)

    Article  Google Scholar 

  11. Boitier, F., Lemaire, V., Pesic, J., Chavarria, L., Layec, P., Bigo, S., Dutisseuil, E.: Proactive fiber damage detection in real-time coherent receiver. In: Proceedings of ECOC (2017)

  12. Rafique, D., Velasco, L.: Machine learning for optical network automation: overview, architecture and applications. IEEE/OSA J. Opt. Commun. Netw. 10, D126–D143 (2018)

    Article  Google Scholar 

  13. Vela, A.P., Ruiz, M., Velasco, L.: Distributing data analytics for efficient multiple traffic anomalies detection. Elsevier Comput. Commun. 107, 1–12 (2017)

    Article  Google Scholar 

  14. Casellas, R., Martínez, R., Vilalta, R., Muñoz, R.: Control, management and orchestration of optical networks: evolution, trends and challenges. IEEE/OSA J. Lightwave Technol. 36, 1–13 (2018)

    Article  Google Scholar 

  15. Velasco, L., Chiadò Piat, A., González, O., Lord, A., Napoli, A., Layec, P., Rafique, D., D’Errico, A., King, D., Ruiz, M., Cugini, F., Casellas, R.: Monitoring and data analytics for optical networking: benefits, architectures, and use cases. IEEE Netw. Mag. 33, 100–108 (2019)

    Article  Google Scholar 

  16. Velasco, L., Vela, A.P., Morales, F., Ruiz, M.: Designing, operating and re-optimizing elastic optical networks (Invited Tutorial). IEEE/OSA J. Lightwave Technol. (JLT) 35, 513–526 (2017)

    Article  Google Scholar 

  17. Gifre, L., Izquierdo-Zaragoza, J.-L., Ruiz, M., Velasco, L.: Autonomic disaggregated multilayer networking. IEEE/OSA J. Opt. Commun. Netw. (JOCN) 10, 482–492 (2018)

    Article  Google Scholar 

  18. Velasco, L., Gifre, L., Izquierdo-Zaragoza, J.-L., Paolucci, F., Vela, A.P., Sgambelluri, A., Ruiz, M., Cugini, F.: An architecture to support autonomic slice networking (Invited). IEEE/OSA J. Lightwave Technol. 36, 135–141 (2018)

    Article  Google Scholar 

  19. Velasco, L., Sgambelluri, A., Casellas, R., Gifre, L., Izquierdo-Zaragoza, J.-L., Fresi, F., Paolucci, F., Martínez, R., Riccardi, E.: Building autonomic optical whitebox-based networks. IEEE/OSA J. Lightwave Technol. 36, 3097–3104 (2018)

    Article  Google Scholar 

  20. Shariati, B., Boitier, F., Ruiz, M., Layec, P., Velasco, L.: Autonomic transmission through pre-FEC BER degradation prediction based on SOP monitoring. In: Proceedings of European Conference on Optical Communication (ECOC) (2018)

  21. Shariati, B., Ruiz, M., Comellas, J., Velasco, L.: Learning from the optical spectrum: failure detection and identification (Invited). IEEE/OSA J. Lightwave Technol. 37, 433–440 (2019)

    Article  Google Scholar 

  22. Vela, A.P., Ruiz, M., Fresi, F., Sambo, N., Cugini, F., Meloni, G., Potí, L., Velasco, L., Castoldi, P.: BER degradation detection and failure identification in elastic optical networks. IEEE/OSA J. Lightwave Technol. 35, 4595–4604 (2017)

    Article  Google Scholar 

  23. Sanjiban, P., Roy, S., Balas, V.: Handbook of Neural Computation, 1st edn. Elsevier, Amsterdam (2017)

    Google Scholar 

  24. Li, M., Zhang, T., Chen, Y., Smola, A.: Efficient mini-batch training for stochastic optimization. In: Proceedings of ACM KDD (2014)

  25. Sugihara, K., Miyata, Y., Sugihara, T., Kubo, K., Yoshida, H., Matsumoto, W., Mizuochi, T.: A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s. In: Proceedings of OFC (2013)

  26. Rasmussen, A., Yankov, M., Berger, M., Larsen, K., Ruepp, S.: Improved energy efficiency for optical transport networks by elastic forward error correction. IEEE/OSA J. Opt. Commun. Netw. 6, 397–407 (2014)

    Article  Google Scholar 

  27. Velasco, L., Shariati, B., Boitier, F., Layec, P., Ruiz, M.: A learning life-cycle to speed-up autonomic optical transmission and networking adoption. IEEE/OSA J. Opt. Commun. Netw. 11, 226–237 (2019)

    Article  Google Scholar 

  28. Ruiz, M., Tabatabaeimehr, F., Velasco, L.: Knowledge management in optical networks: architecture, methods and use cases (Invited). IEEE/OSA J. Opt. Commun. Netw. 12, A70–A81 (2020)

    Article  Google Scholar 

  29. Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)

    Article  MathSciNet  Google Scholar 

  30. Dongsheng, M., Bondade, R.: Enabling power-efficient DVFS operations on silicon. IEEE Circuits Syst. Mag. 10, 14–30 (2010)

    Article  Google Scholar 

  31. Wuttke, J., Krummrich, P.M., Rosch, J.: Polarization oscillations in aerial fiber caused by wind and power-line current. IEEE Photonics Technol. Lett. 15, 882–884 (2003)

    Article  Google Scholar 

  32. AEMET OpenData. https://opendata.aemet.es/. Accessed August 2020

  33. Kupfer, T., Bisplinghof, A., Duthel, T., Fludger, C., Langenbach, S.: Optimizing power consumption of a coherent DSP for metro and data center interconnects. In: Proceedings OFC (2017)

Download references

Acknowledgements

The research leading to these results has received funding from the European Commission for the H2020-ICT-2016-2 METRO-HAUL Project (G.A. 761727), from the AEI/FEDER TWINS Project (TEC2017-90097-R) and from the Catalan Institution for Research and Advanced Studies (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Velasco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, M., Boitier, F., Shariati, B. et al. Predictive autonomic transmission for low-cost low-margin metro optical networks. Photon Netw Commun 40, 68–81 (2020). https://doi.org/10.1007/s11107-020-00909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00909-5

Keywords

Navigation