Skip to main content
Log in

Error resilience video coding parameters and mechanisms selection with End-to-End rate-distortion analysis at frame level

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To improve the quality of video transmission, a fast error resilience coding method based on frame level rate-distortion analysis is proposed. To constrain the accumulated error propagation distortion and error concealment distortion simultaneously, reference frame selection and intra/inter mode decision are jointly used with redundant pictures. An adaptive multiple redundant picture (AMRP) coding mechanism is used for redundant picture coding with the adaptively estimated number of redundant pictures and encoding parameter for each specific redundant picture. The encoding parameters of different frames are adjusted based on the distortion propagation. We propose a statistical model for efficiently estimating the distortion and rate of the primary and the redundant picture. The total distortion and rate of the primary and the redundant picture are then formulated as a function of the quantization parameter, the temporal prediction distance, and the error resilient configuration. Lastly, the end-to-end rate-distortion optimized selection of the encoding parameters and coding structure is efficiently performed considering error propagation. Experimental results demonstrate that the proposed algorithm exhibits significant performance gains over the state-of-the-art error-resilient encoding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen ZF, Wu DP (2012) Prediction of transmission distortion for wireless video communication: analysis. IEEE Trans Image Process 21(3):1123–1137

    Article  MathSciNet  Google Scholar 

  2. Ferre P, Agrafiotis D, Bull D (2010) A video error resilience redundant slices algorithm and its performance relative to other fixed redundancy schemes. Signal Process-Image 25:163–178

    Article  Google Scholar 

  3. Frossard P, Verscheure O (2001) AMISP: a complete content-based MPEG-2 error-resilient scheme. IEEE Trans Circuits Syst Video Technol 11(9):989–998

    Article  Google Scholar 

  4. Girod B (2000) Efficiency analysis of multihypothesis motion-compensated prediction for video coding. IEEE Trans Image Process 9(2):173–183

    Article  Google Scholar 

  5. Haskell P, Messerschmitt D (1992) Resynchronization of motion compensated video affected by ATM cell loss. IEEE Conf on Acoustics, Speech, and Signal Processing, vol.3. San Francisco, CA, 545–548.

  6. Katz B, Greenberg S, Yarkoni N, Blaunstien N, Giladi R (2007) New error-resilient scheme based on FMO and dynamic redundant slices allocation for wireless video transmission. IEEE Trans Broadcast 53(1):308–319

    Article  Google Scholar 

  7. Kung WY, Kim CS, Kuo CCJ (2006) Analysis of multihypothesis motion compensated prediction (MHMCP) for robust visual communication. IEEE Trans Circuits Syst Video Technol 16(1):146–153

    Article  Google Scholar 

  8. Leontaris A, Cosman PC (2007) Compression efficiency and delay tradeoffs for hierarchical b-pictures and pulsed- quality frames. IEEE Trans Image Process 16(7):1726–1740

    Article  MathSciNet  Google Scholar 

  9. Lin CY, Tillo T, Zhao Y, Jeon B (2011) Multiple description coding for H.264/AVC with redundancy allocation at macro block level. IEEE Trans Circuits Syst Video Technol 21(5):589–600

    Article  Google Scholar 

  10. Mohammad K, Shervin S, Khosrow Haj S (2014) A review of multiple description coding techniques for error-resilient video delivery. Multimed Syst 20(3):283–309

    Article  Google Scholar 

  11. Moiron S, Ali I, Ghanbari M, Fleury M (2011) Limitations of multiple reference frames with cyclic intra-refresh line for H.264. AVC”, Electron Lett 47(2):103–104

    Article  Google Scholar 

  12. Psannis KE, Ishibashi Y (2009) Effcient error resilient algorithm for H.264/AVC: mobility management in wireless video streaming. Telecommun Syst 41(2):65–76

    Article  Google Scholar 

  13. Rane S, Baccichet P, Girod B (2008) Systematic lossy error protection of video signals. IEEE Trans Circuits Syst Video Technol 18(10):1347–1360

    Article  Google Scholar 

  14. Shu HY, Chau LP (2008) Intra/inter macroblock mode decision for error-resilient transcoding. IEEE Trans Multim 10(1):97–104

    Article  Google Scholar 

  15. Stockhammer T, Kontopodis D, Wiegand T (2002) Rate-distortion optimization for JVT/H.26L coding in packet loss environment. Proc Packet Video Workshop, Pittsburgh

    Google Scholar 

  16. Sun YC, Tsai WJ (2014) Rate-distortion optimized mode selection method for multiple description video coding. Multimed Tools Appl 72(2):1411–1439

    Article  Google Scholar 

  17. Tillo T, Grangetto M, Olmo G (2008) Redundant slice optimal allocation for H.264 multiple description coding. IEEE Trans Circuits Syst Video Technol 18(1):59–70

    Article  Google Scholar 

  18. Wang S, Izquierdo E (2007) Rate-distortion optimized motion -compensated prediction for packet loss resilient video coding. IEEE Trans Image Process 16(5):1327–1338

    Article  MathSciNet  Google Scholar 

  19. Xiao JM, Tillo T, Lin CY, Zhao Y (2011) Error-resilient video coding with end-to-end rate distortion optimized at macroblock level,” EURASIP J Adv Signal Process 1(80)

  20. Xiao JM, Tillo T, Zhao Y (2013) Real-time video streaming using randomized expanding reed-solomon code. IEEE Trans Circuits Syst Video Technol 23(11):1825–1836

    Article  Google Scholar 

  21. Xu YY, Zhu C (2013) End-to-end rate-distortion optimized description generation for H.264 multiple description video coding. IEEE Trans Circuits Syst Video Technol 23(9):1523–1536

    Article  Google Scholar 

  22. Yang T, Zhu C, Fan X, Peng Q (2012) Source distortion temporal propagation model for optimized motion compensated video coding. Proc. IEEE Int. Conf. Multimedia Expo, Melbourne, pp 85–90

    Google Scholar 

  23. Zhang R, Regunathan SL, Rose KM (2000) Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE J Sel Areas Commun 18(6):966–976

    Article  Google Scholar 

  24. Zhou YR, Chen YW (2010) Error-resilient video coding of H.264 AVC based on network-adaptive intra refresh and reference selection refresh. Opt Eng 49(7):077401

    Article  Google Scholar 

  25. Zhu C, Wang Y, Hannuksela MM (2009) Error resilient video coding using redundant pictures. IEEE Trans Circuits Syst Video Technol 19(1):3–14

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of Key Scientific and Technological Innovation Team of Zhejiang Province, (Grant No. 2011R09021-06), the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Chen, Y. Error resilience video coding parameters and mechanisms selection with End-to-End rate-distortion analysis at frame level. Multimed Tools Appl 75, 2347–2366 (2016). https://doi.org/10.1007/s11042-014-2409-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2409-0

Keywords

Navigation