Skip to main content
Log in

Structure-Preserving Methods for Computing Complex Band Structures of Three Dimensional Photonic Crystals

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work is devoted to the numerical computation of complex band structure \(\mathbf {k}=\mathbf {k}(\omega )\in {\mathbb {C}}^3\), with \(\omega \) being positive frequencies, of three dimensional isotropic dispersive or non-dispersive photonic crystals from the perspective of structured quadratic eigenvalue problems (QEPs). Our basic strategy is to fix two degrees of freedom in \(\mathbf {k}\) and to view the remaining one as the eigenvalue of a complex gyroscopic QEP which stems from Maxwell’s equations discretized by Yee’s scheme. We reformulate this gyroscopic QEP into a \(\top \)-palindromic QEP, which is further transformed into a structured generalized eigenvalue problem for which we have established a structure-preserving shift-and-invert Arnoldi algorithm. Moreover, to accelerate the inner iterations of the shift-and-invert Arnoldi algorithm, we propose an efficient preconditioner which makes most of the fast Fourier transforms. The advantage of our method is discussed in detail and corroborated by several numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chern, R.L., Hsieh, H.E., Huang, T.M., Lin, W.W., Wang, W.: Singular value decompositions for single-curl operators in three-dimensional Maxwell’s equations for complex media. SIAM J. Matrix Anal. Appl. 36, 203–224 (2015). https://doi.org/10.1137/140958748

    Article  MathSciNet  MATH  Google Scholar 

  2. Davanco, M., Urzhumov, Y., Shvets, G.: The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. Opt. Exp. 15(15), 9681 (2007). https://doi.org/10.1364/oe.15.009681

    Article  Google Scholar 

  3. Engström, C., Richter, M.: On the spectrum of an operator pencil with applications to wave propagation in periodic and frequency dependent materials. SIAM J. Appl. Math. 70(1), 231–247 (2009). https://doi.org/10.1137/080728779

    Article  MathSciNet  MATH  Google Scholar 

  4. Fietz, C., Urzhumov, Y., Shvets, G.: Complex k band diagrams of 3D metamaterial/photonic crystals. Opt. Exp. 19(20), 19027 (2011). https://doi.org/10.1364/oe.19.019027

    Article  Google Scholar 

  5. Hsue, Y.C., Freeman, A.J., Gu, B.Y.: Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.72.195118

    Article  Google Scholar 

  6. Huang, T.M., Hsieh, H.E., Lin, W.W., Wang, W.: Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three dimensional photonic crystals. SIAM J. Matrix Anal. Appl. 34, 369–391 (2013). https://doi.org/10.1137/120872486

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, T.M., Li, T., Li, W.D., Lin, J.W., Lin, W.W., Tian, H.: Solving Three Dimensional Maxwell Eigenvalue Problem with Fourteen Bravais lattices. Technical Report (2018). arXiv:1806.10782

  8. Huang, T.M., Lin, W.W., Mehrmann, V.: A Newton-type method with nonequivalence deflation for nonlinear eigenvalue problems arising in photonic crystal modeling. SIAM J. Sci. Comput. 38, B191–B218 (2016). https://doi.org/10.1137/151004823

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, T.M., Lin, W.W., Qian, J.: Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration on fast trains. SIAM J. Matrix Anal. Appl. 30, 1566–1592 (2008). https://doi.org/10.1137/080713550

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, T.M., Lin, W.W., Wang, W.: A hybrid Jacobi-Davidson method for interior cluster eigenvalues with large null-space in three dimensional lossless Drude dispersive metallic photonic crystals. Comput. Phys. Commun. 207, 221–231 (2016). https://doi.org/10.1016/j.cpc.2016.06.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    MATH  Google Scholar 

  12. Leminger, O.: Wave-vector diagrams for two-dimensional photonic crystals. Opt. Quant. Electron. 34(5–6), 435–443 (2002). https://doi.org/10.1007/bf02892608

    Article  Google Scholar 

  13. Lin, W.W.: A new method for computing the closed-loop eigenvalues of a discrete-time algebraic Riccatic equation. Linear Algebra Appl. 96, 157–180 (1987). https://doi.org/10.1016/0024-3795(87)90342-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, L., Fu, L., Joannopoulos, J.D., Soljačić, M.: Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics 7, 294–299 (2013). https://doi.org/10.1038/nphoton.2013.42

    Article  Google Scholar 

  15. Luo, M., Liu, Q.H.: Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency. J. Opt. Soc. Am. A 27(8), 1878–1884 (2010). https://doi.org/10.1364/JOSAA.27.001878

    Article  Google Scholar 

  16. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006). https://doi.org/10.1137/050628362

    Article  MathSciNet  MATH  Google Scholar 

  17. Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22, 1905–1925 (2001). https://doi.org/10.1137/S1064827500366434

    Article  MathSciNet  MATH  Google Scholar 

  18. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  19. Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010). https://doi.org/10.1016/j.commatsci.2010.05.010

    Article  Google Scholar 

  20. Ward, A.J., Pendry, J.B., Stewart, W.J.: Photonic dispersion surfaces. J. Phys. Condens. Matter 7(10), 2217–2224 (1995). https://doi.org/10.1088/0953-8984/7/10/027

    Article  Google Scholar 

  21. Weiglhofer, W.S., Lakhtakia, A.: Introduction to Complex Mediums for Optics and Electromagnetics. SPIE, Washington, DC (2003)

    Book  Google Scholar 

  22. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966). https://doi.org/10.1109/TAP.1966.1138693

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by the ST Yau Center in National Chiao Tung University and the Shing-Tung Yau Center of Southeast University. T.-M. Huang was partially supported by the Ministry of Science and Technology (MoST) 108-2115-M-003-012-MY2 National Center for Theoretical Sciences (NCTS) in Taiwan. T. Li was supported in parts by the National Natural Science Foundation of China (NSFC) 11971105. W.-W. Lin was partially supported by MoST 106-2628-M-009-004-. H. Tian was supported by MoST 107-2811-M-009-002-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiexiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TM., Li, T., Lin, JW. et al. Structure-Preserving Methods for Computing Complex Band Structures of Three Dimensional Photonic Crystals. J Sci Comput 83, 35 (2020). https://doi.org/10.1007/s10915-020-01220-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01220-1

Keywords

Mathematics Subject Classification

Navigation