Skip to main content

Advertisement

Log in

Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We formulate a conductance-based model for a 3-neuron motif associated with Childhood Absence Epilepsy (CAE). The motif consists of neurons from the thalamic relay (TC) and reticular nuclei (RT) and the cortex (CT). We focus on a genetic defect common to the mouse homolog of CAE which is associated with loss of GABAA receptors on the TC neuron, and the fact that myelination of axons as children age can increase the conduction velocity between neurons. We show the combination of low GABAA mediated inhibition of TC neurons and the long corticothalamic loop delay gives rise to a variety of complex dynamics in the motif, including bistability. This bistability disappears as the corticothalamic conduction delay shortens even though GABAA activity remains impaired. Thus the combination of deficient GABAA activity and changing axonal myelination in the corticothalamic loop may be sufficient to account for the clinical course of CAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arakaki, T., Mahon, S., Charpier, S., Leblois, A., Hansel, D. (2016). The role of striatal feedforward inhibition in the maintenance of absence seizures. Journal of Neuroscience, 36, 9618–9623.

    Article  CAS  PubMed  Google Scholar 

  • Beenhakker, M.P., & Huguenard, J.R. (2009). Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron, 62, 612–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens, T.E.S., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A.M., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, J.M., Matthews, P.M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6, 750–757.

    Article  CAS  PubMed  Google Scholar 

  • Berkovic, S.F. (1993). Childhood absence epilepsy and juvenile absence epilepsy. In E. Wyllie (Ed.) The treatment of epilepsy: principles and practice (pp. 547–551). Philadelphia: Lea & Febiger.

  • Bouwman, B.M., Suffczynski, P., Lopes da Silva, F.H., Maris, E., Rijn, C.M. (2007). GABAErgic mechanisms in absence epilepsy: a computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in WAG/rij rats. European Journal of Neuroscience, 25, 2783–2790.

    Article  PubMed  Google Scholar 

  • Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A. (2006). A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16, 1296–1313.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Parker, W.D., Wang, K. (2014). The role of T-type calcium channel genes in absence seizures. Frontiers in Neurology, 5, 45.

    PubMed  PubMed Central  Google Scholar 

  • Chen, M., Cao, D., Xia, Y., Yao, D. (2017). Control of absence seizures by the thalamic feed-forward inhibition. Frontiers of Computational Neuroscience, 11, Article 31.

  • Chkhenkeli, S.A., & Milton, J. (2003). Dynamic epileptic systems versus static epileptic foci. In J. Milton, & P. Jung (Eds.) Disease, epilepsy as a dynamic (pp. 25–36). New York: Springer.

  • Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences (USA), 81, 4586–4590.

    Article  CAS  Google Scholar 

  • Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy. Genes, channels, neurons and networks. Nature Reviews Neuroscience, 3, 371–381.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, F.H.L., Blanes, W., Kalitzin, S., Gomez, J.P., Suffczynski, P., Velis, F.J. (2002). Epilepsies as dynamical diseases of brain systems: basic models of the transitions between normal and epileptic activity. Epilepsia, 44(Suppl 12), 72–83.

    Google Scholar 

  • da Silva, F.H.L., Blanes, W., Kalitzin, S., Gomez, J.P., Suffczynski, P., Velis, F.J. (2003). Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Transactions of Biomedical Engineering, 50, 540–548.

    Article  Google Scholar 

  • Depaulis, A., & Charpier, S. (2018). Pathophysiology of absence epilepsy: Insights from genetic models. Neuroscience Letters, 667, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Depaulis, A., David, O., Charpier, S. (2016). The genetic absence epilepsy rat from Strassberg as a model to decipher the neuronal and network mechanisms of generalized epilepsies. Journal of Neuroscience Methods, 260, 159–174.

    Article  PubMed  Google Scholar 

  • Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABAB receptors. Journal of Neuroscience, 18, 9099–9111.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A. (2008). Corticothalamic feedback: a key to explain absence seizures. In I. Soltesz, & K. Staley (Eds.) Computational neuroscience in epilepsy (pp. 184–214). New York: Academic Press.

  • Destexhe, A., & Babloyantz, A. (1991). A model of the inward current Ih and its possible role in thalamocortical oscillations. Neuroreport, 4, 223–226.

    Article  Google Scholar 

  • Destexhe, A., Babloyantz, A., Sejnowski, T.J. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe, A., Contreras, D., Sejnowski, T.J., Steriade, M. (1994). Modeling the control of reticular thalamic oscillations by neuromodulators. Neuroreport, 5, 2217–2220.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Bal, T., McCormick, D.A., Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76, 2049–2070.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z., Sejnowski, T., Segev, I. (1998). Kinetic models of synaptic transmission. In C. Koch (Ed.) Methods in neuronal modeling: from synapses to networks (pp. 1–26). Cambridge: MIT Press.

  • Driver, R.D., Sasser, D.W., Slater, M.L. (1973). The equation x (t) = a x(t) + b x(tτ) with small delay. American Mathematics Monthly, 80, 990–995.

    Google Scholar 

  • Eissa, T.I., Dijkstra, K., Brune, C., Emerson, R.G., van Putten, M.J.A.M., Goodman, R.R, McKhann, GM Jr, Schevon, C.A., van Drongelen, W., van Gils, S.A. (2017). Cross-scale effects of neural interactions during human neocortical seizure activity. Proceedings National Academy Science (USA), 114, 10761–10766.

    Article  CAS  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.

  • Ermentrout, B., & Terman, D.H. (2010). Mathematical foundations of neuroscience. New York: Springer.

    Book  Google Scholar 

  • Fan, D., Liu, S., Wang, Q. (2016). Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Scientific Reports, 6, 37703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foss, J., & Milton, J. (2000). Multistability in recurrent inhibitory loops arising from delay. Journal of Neurophysiology, 84, 975–985.

    Article  CAS  PubMed  Google Scholar 

  • Foss, J., Longtin, A., Mensour, B., Milton, J. (1996). Multistability and delayed recurrent feedback. Physical Review Letters, 76, 708–711.

    Article  CAS  PubMed  Google Scholar 

  • Foss, J., Moss, F., Milton, J. (1997). Noise, multistability and delayed recurrent loops. Physical Review E, 55, 4536–4543.

    Article  CAS  Google Scholar 

  • Gupta, D., Ossenblok, P., van Luijtelaar, G. (2011). Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy. Medical Biology Engineering Computation, 49, 555–565.

    Article  Google Scholar 

  • Hashemi, M., Hutt, A., Hight, D., Sleigh, S. (2017). Anesthetic action on the transmission delay between cortex and thalamus explains the beta-fuzz observed under propofol anesthesia. PLoS ONE, e0179286, 12.

    Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, T., & Sundram, M. (1989). Rhythmic auditory stimulation in generalized epilepsy. Electroencephalography clinical Neurophysiology, 72, 455–458.

    Article  CAS  PubMed  Google Scholar 

  • Hortnagl, H., Tasan, R.O., Wieselthaler, A., Kirchmair, E., Sieghart, W., Sperk, G. (2013). Patterns of mRNA and protein expression for GABAA receptor subunits in the mouse brain. Neuroscience, 236, 345–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houssaini, K.E., Ivanov, A.I., Bernard, C., Jirsa, V.K. (2015). Seizures, refractory status epilepticus, and depolarization block as endogeneous brain activities. Physical Review E, 91, 010701.

    Article  CAS  Google Scholar 

  • Huguenard, J.R., & Prince, D.A. (1991). Slow inactivation of a TEA-sensitive K current in acutely isolated rat thalamic relay neurons. Journal of Neurophysiology, 66(4), 1316–1328.

    Article  CAS  PubMed  Google Scholar 

  • Huguenard, J.R., & Prince, D.A. (1992). A novel T-type current underlies prolonged Ca(2 +)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. Journal of Neuroscience, 12, 3804–3804.

    Article  CAS  PubMed  Google Scholar 

  • Insperger, T. (2015). On the approximation of delayed systems by Taylor series expansion. Journal of Computational and Nonlinear Dynamics, 10, 024503.

    Article  Google Scholar 

  • Jirsa, V.K., Proix, T., Perdikis, D., Woodman, M.M., Wang, H., Gonzalez-Martinez, J., Bernard, C., Bénar, C., Guye, M., Chauvel, P., Bartolomei, F. (2017). The virtual patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C. (2014). On the nature of seizure dynamics. Brain: A Journal of Neurology, 137, 2210–2230.

    Article  Google Scholar 

  • Kandel, E., Schwartz, J., Jessell, T. (2000). Principles of neural science. New York: McGraw-Hill.

    Google Scholar 

  • Koepp, M.J., Caciagli, L., Pressler, R.M., Lehnertz, K., Beniczky, S. (2016). Reflex seizures, traits, and epilepsies: from physiology to pathology. Lancet Neurology, 15, 92–105.

    Article  PubMed  Google Scholar 

  • Kostopoulos, G.K. (2000). Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clinical Neurophysiology, 111(Suppl. 2), S27–S38.

    Article  PubMed  Google Scholar 

  • Kreindler, A. (1965). Experimental epilepsy. New York: Elsevier.

    Google Scholar 

  • Kurzweil, J. (1971). Small delays don’t matter. In D. Chillingworth (Ed.) Proceedings of the symposium on differential equations and dynamical systems, lecture notes in mathematics (pp. 47–49). New York: Springer.

  • Landisman, C.E., Long, M.A., Beierlein, M., Deans, M.R., Paul, D.L., Connors, B.W. (2002). Electrical synapses in the thalamic reticular nucleus. Journal of Neuroscience, 22, 1002–1009.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., & Wu, J. (2007). Multistability in spiking neuron models of delayed recurrent inhibitory loops. Neural Computation, 19, 2124–2148.

    Article  PubMed  Google Scholar 

  • Mak-McCully, R.A., Rolland, M., Sargsyan, A., Gonzalez, C., Magnin, M., Chauvel, P., Rey, M., Bastuji, H., Halgren, E. (2017). Coordination of cortical and thalamic activity during non-REM sleep in humans. Nature Communications, 8, 15499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maljevic, S., Krampfl, K., Cobilanschi, J., Tilgen, N., Beyer, S., Weber, Y.G., Schlesinger, F., Ursu, D., Melzer, W., Cossette, P., Bufler, J., Lerche, H., Helis, A. (2006). A mutation in the GABAA receptor α 1-subunit is associated with absence epilepsy. Annals of Neurology, 59, 983–987.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D.A., Wang, Z., Huguenard, J. (1993). Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex, 3, 387–398.

    Article  CAS  PubMed  Google Scholar 

  • McDougal, R.A., Morse, T.M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., Miller, P.L., Shepherd, G.M., Hines, M.L. (2017). Twenty years of modelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci., 42(1), 1–10.

    Article  PubMed  Google Scholar 

  • McKusick, V.A. (2017). Mendelian inheritance in man: a catalogue of human genes and genetic disorders. https://www.omin.org.

  • Meeren, H.K., Pijn, J.P., Luijtelaar, E.L., Coenen, A.M., da Silva, F.H.L. (2002). Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. Journal of Neuroscience, 22, 1480–1485.

    Article  CAS  PubMed  Google Scholar 

  • Milanowski, P., & Suffczynski, P. (2016). Seizures start without common signatures of critical transitions. International Journal of Neurological Systems, 26, 1650053.

    Article  Google Scholar 

  • Milton, J.G., Gotman, J., Remillard, G.M., Andermann, F. (1987). Timing of seizure recurrence in adult epileptics: a statistical analysis. Epilepsia, 28, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease. New York: Springer.

    Book  Google Scholar 

  • Milton, J., & Ohira, T. (2014). Mathematics as a laboratory tool: dynamics, delays and noise. New York: Springer.

    Book  Google Scholar 

  • Milton, J., Wu, J., Campbell, S.A., Bélair, L. (2017). Outgrowing neurological diseases: Microcircuits, conduction delay and dynamics diseases. In P. Erdi, S. Bhattacharya, A. Cochran (Eds.) Computational neurology - computational psychiatry: why and how? (pp. 11–47). New York: Springer.

  • Milton, J.G. (2000). Epilepsy and the multistable nervous system. In J. Walleczek (Ed.) Self-organized biological dynamics and nonlinear control by external stimuli (pp. 374–386). Cambridge: Cambridge University Press.

  • Milton, J.G., Chkhenkeli, S.A., Towle, V.L. (2007). Andamp; A.R. McIntosh Brain connectivity and the spread of epileptic seizures. In Jirsa, V. K. (Ed.) Handbook of brain connectivity (pp. 477–503). New York: Springer.

  • Nagaraj, V., Lee, S., Krook-Magnuson, E., Soltesz, I., Benquet, P., Irazoqui, P., Netoff, T. (2015). The future of seizure prediction and intervention: Closing the loop. Journal of Clinical Neurophysiology, 32, 194–206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osorio, I., Frei, M.G., Sornette, D., Milton, J., Lai, Y.C. (2010). Epileptic seizures: quakes of the brain? Physical Review E, 82, 021919.

    Article  CAS  Google Scholar 

  • Osorio, I., Zaveri, H.P., Frei, M.G., Arthurs, S. (2011). Epilepsy: the intersection of neurosciences, biology, mathematics, engineering and physics. New York: CRC Press.

    Google Scholar 

  • Paz, J.T., Bryant, A.S., Peng, K., Fenno, L., Yizhar, O., Frankel, W.N., Deisseroth, K., Huguenard, J.R. (2011). A new mode of corticothalamic transmission revealed in the Gria44-’- model of absence epilepsy. Nature Neuroscience, 14, 1167–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penry, J.K., Porter, R.J., Driefess, F.E. (1975). Simultaneous recording of absence seizures with videotape and electroencephalography. a study of 374 seizures in 48 patients. Brian, 98, 427–440.

    Article  CAS  Google Scholar 

  • Pollack, P.O., Guillemain, J., Hu, E., Deransant, C., Depaulis, A., Charpier, S. (2007). Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. Journal of Neuroscience, 27, 6590–6599.

    Article  CAS  Google Scholar 

  • Powell, K.L., & et al. (2009). A Cav3. 2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. Journal of Neuroscience, 29(2), 371– 380.

    Article  CAS  PubMed  Google Scholar 

  • Tsakiridou, E., Bertollini, L., de Curtis, M., Avanzini, G., Pape, H. (1995). Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. Journal of Neuroscience, 15(4), 3110–3117.

    Article  CAS  PubMed  Google Scholar 

  • Quan, A., Osorio, I., Ohira, T., Milton, J. (2011). Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy? Chaos, 21, 047512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, J.A., & Robinson, P.A. (2008). Modeling absence seizure dynamics: Implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. Journal of Theortical Biology, 253, 189–201.

    Article  Google Scholar 

  • Robinson, P., Rennie, C.J., Rowe, D.L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65, 041924.

    Article  CAS  Google Scholar 

  • Salami, M., Itami, C., Tsumoto, T., Kimura, F. (2003). Change of conduction velocity be regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences (USA), 100, 6174–6179.

    Article  CAS  Google Scholar 

  • Skinner, F.K., Bazzazi, H., Campbell, S.A. (2005). Two-cell to N-cell heterogeneous, inhibitory networks: precise linking of multistable and coherent properties. J. Computational Neuroscience, 18(3), 343–352.

    Article  CAS  Google Scholar 

  • Soltesz, I., & Staley, K. (2008). Computational neuroscience in epilepsy. New York: Academic Press.

    Google Scholar 

  • Suffczynski, P., Kalitzin, S., Lopes da Silva, F.H. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126, 467–484.

    Article  CAS  PubMed  Google Scholar 

  • Swadlow, H.A., & Waxman, S.G. (2012). Axonal conduction delays. Scholarpedia, 7(6), 1451.

    Article  Google Scholar 

  • Tenney, J.R., Fujiwara, H., Horn, P.S., Jacobsen, S.E., Glaser, T.A., Rose, D.F. (2013). Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Research, 106, 113–122.

    Article  PubMed  Google Scholar 

  • Traub, R.D., & Miles, R. (1991). Neuronal networks of the hippocampus. New York: Cambridge University Press.

    Book  Google Scholar 

  • van de Kamp, C., Gawthrop, P.J., Gollee, H., Loram, I.D. (2013). Refractoriness in sustained visuo-manual control. is the refractory duration intrinsic or does it depend on external system parameters? PLoS Computational Biology, e1002843, 9.

  • Vince, M.A. (1948). The intermittency of control movements and the psychological refractory period. British Journal of Psychology General Section, 38, 149–157.

    Article  CAS  Google Scholar 

  • Wallace, R.H., Marini, C.V., Petrou, S., Harkin, L.A., Bowser, D.N., Panchal, R.G., Williams, D.A., Sutherland, G.R., Mulley, J.C., Scheffer, I.E., Berkovic, S.F. (2001). Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nature Genetics, 28, 49–52.

    CAS  PubMed  Google Scholar 

  • Wang, X.J., Rinzel, J., Rogawski, M.A. (1991). A model of the T-type calcium current and the low-threshold spike in thalamic neurons. Journal of Neurophysiology, 66, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Weir, B. (1964). Spikes-wave from stimulation of reticular core. Archives of Neurology, 11, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S.A., Banks, G.P., McKhan, G.M. Jr., Goodman, R.R, Emerson, R.G., Trevelyan, A.J., Schevon, C.A. (2013). Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain, 136, 3796–3808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westmije, I., Ossenblok, P., Gunning, B., van Luijtelaar, G. (2009). Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia, 50, 2538– 2548.

    Article  Google Scholar 

  • Williams, D. (1953). A study of thalamic and cortical rhythms in petit mal. Brain: A Journal of Neurology, 76, 50–69.

    Article  CAS  Google Scholar 

  • Yang, D. -P., & Robinson, P.A. (2017). Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Physical Review E, 95(4), 042410.

    Article  PubMed  Google Scholar 

  • Zhou, C., Ding, L., Deel, M.E., Ferrick, E.A., Emeson, R.B., Gallagher, M.J. (2015). Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic epilepsy syndrome. Neurobiology of Disease, 73, 407–417.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Samuel Berkovic and Peter Camfield for useful comments on the clinical history and inheritance of children with CAE and Anthony Burre for help with the numerical simulations. SAC and YL acknowledge the support of the Natural Sciences and Engineering Research Council of Canada. JM acknowledges support from the William R Kenan, Jr Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Ann Campbell.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: David Terman

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Intrinsic currents

Appendix: Intrinsic currents

We present here the details of the models for the intrinsic currents of the three neurons of the model (1).

Leak currents:

TC neurons (Destexhe et al. 1993, 1998): \(I_{\mathrm {L}} = \bar {g}_{\mathrm {L}}(V-E_{\mathrm {L}})\); \(\bar {g}_{\mathrm {L}}\)= 0.01 mS/cm2 and EL = -70 mV.

CT neurons (Destexhe et al. 1998): \(I_{\mathrm {L}} = \bar {g}_{\mathrm {L}}(V-E_{\mathrm {L}})\); \(\bar {g}_{\mathrm {L}}\) = 0.1 mS/cm2 and EL = -70 mV.

RT neurons(Destexhe et al. 1996): \(I_{\mathrm {L}} = \bar {g}_{\mathrm {L}}(V-E_{\mathrm {L}})\); \(\bar {g}_{\mathrm {L}}\) = 0.05 mS/cm2 and EL = -90 mV.

Transient voltage-gated K+ current (Traub and Miles 1991)

$$\begin{array}{@{}rcl@{}} I_{\mathrm{K}} &=& \bar{g}_{\mathrm{K}}{m_{k}^{4}} h_{\mathrm{K}} (V-E_{\mathrm{K}}) \end{array} $$
(12)
$$\begin{array}{@{}rcl@{}} \frac{dm}{dt} &=& \alpha_{m}(V)(1-m) - \beta_{m}(V)m \end{array} $$
(13)
$$\begin{array}{@{}rcl@{}} \frac{dh}{dt} &=& \alpha_{h}(V)(1-h) - \beta_{h}(V)h \end{array} $$
(14)
$$\begin{array}{@{}rcl@{}} \alpha_{m_{k}}(V) &=& \frac{0.032(15-V)}{\exp(\frac{15-V}{5})-1} \end{array} $$
(15)
$$\begin{array}{@{}rcl@{}} \beta_{m_{k}}(V) &=& 0.5 \exp(\frac{10-V}{40}) \end{array} $$
(16)
$$\begin{array}{@{}rcl@{}} \alpha_{h_{k}}(V) &=& 0.028\exp(\frac{15-V}{15})+\frac{2}{\exp(\frac{85-V}{10})+ 1} \end{array} $$
(17)
$$\begin{array}{@{}rcl@{}} \beta_{h_{k}}(V) &=& \frac{0.4}{\exp(\frac{40-V}{10})+ 1} \end{array} $$
(18)

TC neurons: \(\bar {g}_{\mathrm {K}}=\) 10 mS/cm2, EK = -90 mV

CT neurons: \(\bar {g}_{\mathrm {K}}=\) 5 mS/cm2, EK = -90 mV

RT neurons: \(\bar {g}_{\mathrm {K}}=\) 20 mS/cm2, EK = -80 mV

Transient voltage-gated Na+ current (Traub and Miles 1991)

$$\begin{array}{@{}rcl@{}} I_{\text{Na}} &=& \bar{g}_{\text{Na}}m_{\text{Na}}^{3} h_{\text{Na}} (V-E_{\text{Na}}) \end{array} $$
(19)
$$\begin{array}{@{}rcl@{}} \frac{dm}{dt} &=& \alpha_{m}(V)(1-m) - \beta_{m}(V)m \end{array} $$
(20)
$$\begin{array}{@{}rcl@{}} \frac{dh}{dt} &=& \alpha_{h}(V)(1-h) - \beta_{h}(V)h \end{array} $$
(21)
$$\begin{array}{@{}rcl@{}} \alpha_{m_{\text{Na}}}(V) &=& \frac{0.32(13-V)}{\exp(\frac{13-V}{4})-1} \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} \beta_{m_{\text{Na}}}(V) &=& \frac{0.28(V-40)}{\exp(\frac{V-40}{5})-1} \end{array} $$
(23)
$$\begin{array}{@{}rcl@{}} \alpha_{h_{\text{Na}}}(V) &=& 0.128 \exp(\frac{17-V}{18}) \end{array} $$
(24)
$$\begin{array}{@{}rcl@{}} \beta_{h_{\text{Na}}}(V) &=& \frac{4}{\exp(\frac{40-V}{5})+ 1} \end{array} $$
(25)

for TC neurons: \(\bar {g}_{\text {Na}}\) = 90 mS/cm2, ENa = + 45 mV

for CT neurons: \(\bar {g}_{\text {Na}}\) = 50 mS/cm2, ENa = + 45 mV

for RT neurons: \(\bar {g}_{\text {Na}}\) = 200 mS/cm2, ENa = + 45 mV

Low threshold Ca++ current (Huguenard and Prince 1992)

$$\begin{array}{@{}rcl@{}} I_{TS} &=& \bar{g}_{\text{Ca}} m_{\text{TS}}^{2} h_{\text{TS}} (V-E_{\text{Ca}}) \end{array} $$
(26)
$$\begin{array}{@{}rcl@{}} \frac{dm}{dt} &=& \frac{m_{\infty}(V) -m}{\tau_{m}(V)} \end{array} $$
(27)
$$\begin{array}{@{}rcl@{}} \frac{dh}{dt} &=& \frac{h_{\infty}(V) -h}{\tau_{h}(V)} \end{array} $$
(28)
$$\begin{array}{@{}rcl@{}} m_{\infty}(V)&=& \frac{1}{1+\exp(\frac{-(V + 52)}{7.4})} \end{array} $$
(29)
$$\begin{array}{@{}rcl@{}} \tau_{m}(V)&=& 1+\frac{0.33}{\exp(\frac{V + 48}{4})+\exp(\frac{-(V + 407)}{50})} \end{array} $$
(30)
$$\begin{array}{@{}rcl@{}} h_{\infty}(V)&=& \frac{1}{1+\exp(\frac{V + 80}{5})} \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} \tau_{h}(V)&=& 28.3 + \frac{0.33}{\exp(\frac{V + 48}{4})+\exp(\frac{-(V + 407)}{50})} \end{array} $$
(32)

where \(\bar {g}_{\text {Ca}}= 3\) mS/cm2, ECa = + 120 mV.

Depolarization-activated K+ current (McCormick et al. 1993)

$$\begin{array}{@{}rcl@{}} I_{\mathrm{M}} &=& \bar{g}_{\mathrm{M}} m_{\mathrm{M}} (V-E_{\mathrm{M}}) \end{array} $$
(33)
$$\begin{array}{@{}rcl@{}} \frac{dm}{dt} &=& \frac{m_{\infty}(V) -m}{\tau_{m}(V)} \end{array} $$
(34)
$$\begin{array}{@{}rcl@{}} m_{\infty}(V) &=& \frac{1}{1+\exp(\frac{-(V + 35)}{10})} \end{array} $$
(35)
$$\begin{array}{@{}rcl@{}} \tau_{m}(V) &=& \frac{1000}{3.3\exp(\frac{V + 35}{20}) +\exp(\frac{-(V + 35)}{20})} \end{array} $$
(36)

where \(\bar {g}_{\mathrm {M}}= 0.07\) mS/cm2, EM = − 100 mV.

Low-threshold Ca++, depolarization-activated hyperpolarization and slow K+ currents (Destexhe et al. 1993; Destexhe and Babloyantz 1991; Huguenard and Prince 1991; Wang et al. 1991)

$$\begin{array}{@{}rcl@{}} I_{T} &=& -\bar{g}_{\mathrm{T}}m_{\mathrm{T}}^{3} h_{\mathrm{T}} (V-E_{\mathrm{T}}) \end{array} $$
(37)
$$\begin{array}{@{}rcl@{}} I_{h} &=& \bar{g}_{h} S F (V-E_{h}) \end{array} $$
(38)
$$\begin{array}{@{}rcl@{}} I_{K2} &=& \bar{g}_{\text{K2}} m_{\text{K2}}(0.6h_{\text{K2,1}} + 0.4 h_{\text{K2,2}})(V-E_{\mathrm{K}}) \end{array} $$
(39)

where \(\bar {g}_{\mathrm {T}}=\)2 mS/cm2, gh =0.02 mS/cm2, gK2 =0.00005 mS/cm2, ET =+ 120 mV, Eh =-43 mV, EK2 = -90 mV. The dynamics for the gating variables mT, hT, S, F, mK2, hK2,1, hK2,2 have non-standard forms, and can be found in Table 1 of Destexhe et al. (1993).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Milton, J. & Campbell, S.A. Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability. J Comput Neurosci 46, 197–209 (2019). https://doi.org/10.1007/s10827-019-00711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00711-x

Keywords

Navigation