Skip to main content
Log in

Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recently Haas et al. (J Neurophysiol 96: 3305–3313, 2006), observed a novel form of spike timing dependent plasticity (iSTDP) in GABAergic synaptic couplings in layer II of the entorhinal cortex. Depending on the relative timings of the presynaptic input at time t pre and the postsynaptic excitation at time t post, the synapse is strengthened (Δt = t post − t pre > 0) or weakened (Δt < 0). The temporal dynamic range of the observed STDP rule was found to lie in the higher gamma frequency band (≥40 Hz), a frequency range important for several vital neuronal tasks. In this paper we study the function of this novel form of iSTDP in the synchronization of the inhibitory neuronal network. In particular we consider a network of two unidirectionally coupled interneurons (UCI) and two mutually coupled interneurons (MCI), in the presence of heterogeneity in the intrinsic firing rates of each coupled neuron. Using the method of spike time response curve (STRC), we show how iSTDP influences the dynamics of the coupled neurons, such that the pair synchronizes under moderately large heterogeneity in the firing rates. Using the general properties of the STRC for a Type-1 neuron model (Ermentrout, Neural Comput 8:979–1001, 1996) and the observed iSTDP we determine conditions on the initial configuration of the UCI network that would result in 1:1 in-phase synchrony between the two coupled neurons. We then demonstrate a similar enhancement of synchrony in the MCI with dynamic synaptic modulation. For the MCI we also consider heterogeneity introduced in the network through the synaptic parameters: the synaptic decay time of mutual inhibition and the self inhibition synaptic strength. We show that the MCI exhibits enhanced synchrony in the presence of all the above mentioned sources of heterogeneity and the mechanism for this enhanced synchrony is similar to the case of the UCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abarbanel, H., Gibb, L., Huerta, R., & Rabinovich, M. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.

    Article  PubMed  Google Scholar 

  • Abarbanel, H., & Talathi, S. (2006). Neural circuitry for recognizing interspike interval sequences. Physical Review Letters, 96, 148104.

    Article  PubMed  CAS  Google Scholar 

  • Acker, C., Kopell, N., & White, J. (2004). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.

    Article  Google Scholar 

  • Benardo, L. (1997). Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. Journal of Neurophysiology, 77, 3134–3144.

    PubMed  CAS  Google Scholar 

  • Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., et al. (1995). Gamma (40–100 Hz) oscillations in the hippocampus of the behaving rat. Journal of Neuroscience, 15, 47–60.

    PubMed  CAS  Google Scholar 

  • Eckhorn, R., Bauer, B., Jordan, W., Brosch, M., Kruse, W., et al. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex. Biological Cybernetics, 60, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, B. (1996). Type 1 membranes, phase resetting curves and synchrony. Neural Compute, 8, 979–1001.

    Article  CAS  Google Scholar 

  • Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-coupled oscillators. Physical Review Letters, 74, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Froemke, R., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C., Koenig P, Engel, K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflect global stimulus properties. Nature, 338, 334–337.

    Article  PubMed  CAS  Google Scholar 

  • Haas, J., Nowotny, T., & Abarbanel, H. (2006). Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. Journal of Neurophysiology, 96, 3305–3313.

    Article  PubMed  Google Scholar 

  • Jefferys, J., Traub, R., & Whittington, M. (1996). Neuronal networks for induced 40 Hz rhythms. Trends in Neuroscience, 19, 202–208.

    Google Scholar 

  • Kopell, N., & Ermentrout, B. (2004). Chemical and Electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proceedings of the National Academy of Sciences, 101, 15482–15487.

    Article  CAS  Google Scholar 

  • Kurths, J., Pikovsky, A., & Rosenblum, M. (2001). Synchronization, a universal concept in non-linear science. Cambridge University Press.

  • Lacaille, J., & Williams, S. (1990). Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro. Neuroscience, 36, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D., Connors, B., Lighthall, J., & Prince, D. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54, 782–806

    PubMed  CAS  Google Scholar 

  • Michelson, H., & Wong, R. (1994). Syncrhonization of inhibitory neurones in the guinea-pig hippocampus in vitro. Journal of Physiology, 477, 35–45.

    PubMed  Google Scholar 

  • Nowotny, T., Zhigulin, V., Selverston, A., Abarbanel, H., & Rabinovich, M. (2003). Enhancement of synchronization in hybrid neural circuit by spike timing dependent plasticity. Journal of Neuroscience, 23, 9776–9785.

    PubMed  CAS  Google Scholar 

  • Oprisan, S., Prinz, A., & Canavier, C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, R., & Sejnowski, T. (1997). Synchronous oscillatory activity in sensory systems: New vistas on mechanisms. Current Opinion in Neurobiology, 7, 536–546.

    Article  PubMed  CAS  Google Scholar 

  • Sheperd, G. (1990). The synaptic organization of the brain. New York: Oxford University Press.

    Google Scholar 

  • Skinner, F., Zhang, L., Velazquez, P., & Carlen, P. (1999). Bursting inhibitory interneuronal networks: A role for gap-junctional coupling. Journal of Neurophysiology, 81, 1274–1283.

    PubMed  CAS  Google Scholar 

  • Traub, R., Kopell, N., Bibbig, A., Buhl, E. H., le Beau, F., et al. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillatios. Journal of Neuroscience, 21, 9478–9486.

    PubMed  CAS  Google Scholar 

  • vanVreeswijk, C., Abbott, L., & Ermentrout, B. (1994). When inhibition and not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.

    Article  CAS  Google Scholar 

  • Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Article  Google Scholar 

  • White, A., Chow, C., Ritt, J., Trevino, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Whittington, M., Traub, R., & Jefferys, J. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie, J. (2004). Numerical methods for stochastic differential equations. Physical Review E, 70, 017701.

    Article  CAS  Google Scholar 

  • Woodin, M., Ganguly, K., & Poo, M. (2003). Coincident Pre- and Postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl Transporter activity. Neuron, 39, 807–820

    Article  PubMed  CAS  Google Scholar 

  • Ylinen, A., Bragin, A., Nadasdy, Z., Jando, G., Szabo, I., et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. Journal of Neuroscience, 15, 30–46.

    PubMed  CAS  Google Scholar 

  • Zhigulin, V., Rabinovich, M., Huerta, R., & Abarbanel, H. (2003). Robustness and enhancement of neural synchronization by activity-dependent coupling. Physical Review E, 67.

Download references

Acknowledgements

This work was performed under the sponsorship of the Office of Naval Research (Grant N00014-02-1-1019) and the National Institute of Health Collaborative Research in Computational Neuroscience program (1R01EB004752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Talathi.

Additional information

Action Editor: Carson C. Chow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talathi, S.S., Hwang, DU. & Ditto, W.L. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J Comput Neurosci 25, 262–281 (2008). https://doi.org/10.1007/s10827-008-0077-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0077-7

Keywords

Navigation