Skip to main content
Log in

Strategy-Proof Mechanism for Online Time-Varying Resource Allocation with Restart

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Time-varying resource allocation in which the resource requirements of a job can vary over time is a new challenge in cloud computing. Time-varying resource allocation can be combined with an auction mechanism to improve the social welfare of resource providers. However, existing research results are based on fixed resource requirements and consequently cannot be used in time-varying resource allocation. This paper proposes a creative integer programming model for time-varying resource allocation problems and designs a strategy-proof online auction mechanism that allows jobs to be scheduled in a preemptive-restart mode. The advantage of this approach is that it can respond to high-priority jobs in a timely manner while still executing low-priority jobs with the restart mode. For the resource allocation and scheduling algorithm, we propose dynamic priority based on the dominant resource proportion and valid active time to improve social welfare and resource utilization. Furthermore, we present a payment pricing algorithm based on critical value theory. Finally, we prove that our proposed mechanism is strategy-proof. Our approach is experimentally compared with existing algorithms in terms of execution time, social welfare, resource utilization and job completion ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nisan, T., Roughgarden, E., Tardos, E., Vazirani, V.: Algorithmic Game Theory (2007)

  2. Amazon EC2: [Online]. Available: https://amazonaws-china.com/cn/ec2/instance-types/ (2019)

  3. Alibaba Cloud: [Online]. Available: https://help.aliyun.com/document_detail/52088.html (2019)

  4. Chen, X., Hu, X., Wang, C., Zheng, B.: Efficient mechanism design for online scheduling. J. Artif. Intell. Res. 56, 429–461 (2016)

    Article  MathSciNet  Google Scholar 

  5. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling preemptable tasks on IaaS cloud systems. J Parallel Distrib. Comput. 72(5), 666–677 (2012). https://doi.org/10.1016/j.jpdc.2012.02.002

    Article  Google Scholar 

  6. Jiao, Y., Wang, P., Niyato, D., Xiong, Z.: Social welfare maximization auction in edge computing resource allocation for mobile blockchain. In: IEEE International Conference on Communications 2018-May, pp 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422632

  7. Cao, X., Zhang, J., Poor, H.V.: An optimal auction mechanism for mobile edge caching. In: Proceedings - International Conference on Distributed Computing Systems 2018-July, pp 388–399 (2018). https://doi.org/10.1109/ICDCS.2018.00046

  8. Alelaiwi, A.: An efficient method of computation offloading in an edge cloud platform. J. Parallel. Distrib. Comput. 127, 58–64 (2019)

    Article  Google Scholar 

  9. Alibaba Cloud: [Online]. Available: https://tianchi.aliyun.com/ (2019)

  10. Nejad, M., Mashayekhy, L., Grosu, D.: Truthful greedy mechanisms for dynamic virtual machine provisioning and allocation in clouds. IEEE Trans Parallel Distrib. Syst. 26(2), 594–603 (2014)

    Article  Google Scholar 

  11. Wu, Q., Hao, J.: A clique-based exact method for optimal winner determination in combinatorial auctions. Inform. Sci. 334, 103–121 (2016)

    Article  Google Scholar 

  12. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

    Article  MathSciNet  Google Scholar 

  13. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for parallel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3), 991–1021 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, X., Li, W., Zhang, X.: Strategy-proof mechanism for provisioning and allocation virtual machines in heterogeneous clouds. IEEE Trans. Parallel Distrib. Syst. 29(7), 1650–1663 (2018)

    Article  Google Scholar 

  15. Mashayekhy, L., Nejad, M., Grosu, D.: A PTAS mechanism for provisioning and allocation of heterogeneous cloud resources. IEEE Trans. Parallel Distrib. Syst. 26(9), 2386–2399 (2015)

    Article  Google Scholar 

  16. Shi, W., Zhang, L., Wu, C., Li, Z., Francis, L.: An online auction framework for dynamic resource provisioning in cloud computing. IEEE/ACM Trans. Netw. 42(1), 71–83 (2014)

    Google Scholar 

  17. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J. Grid Comput. 16, 113–135 (2018)

    Article  Google Scholar 

  18. Abohamama, A.S., Hamouda, E.: A hybrid energy? Aware virtual machine placement algorithm for cloud environments. Expert Syst. Appl. 150, 113306 (2020)

    Article  Google Scholar 

  19. Tang, X., Li, Y., Ren, R., Cai, W.: On first fit bin packing for online cloud server allocation. In: IEEE International Parallel and Distributed Processing Symposium, pp 323–332 (2016)

  20. Angelelli, E., Filippi, C.: On the complexity of interval scheduling with a resource constraint. Theor. Comput. Sci. 412(29), 3650–3657 (2011). https://doi.org/10.1016/j.tcs.2011.03.025

    Article  MathSciNet  Google Scholar 

  21. Angelelli, E., Bianchessi, N., Filippi, C.: Optimal interval scheduling with a resource constraint. Comput. Oper. Res. https://doi.org/10.1016/j.cor.2014.06.002 (2014)

  22. Zhou, H.: Optimal interval scheduling with nonidentical given machines. Clust. Comput., 0123456789. https://doi.org/10.1007/s10586-018-02892-z (2019)

  23. Zhang, P.Y., Zhou, M.C.: Dynamic cloud task scheduling based on a two-stage strategy. IEEE Trans. Autom. Sci. Eng. https://doi.org/10.1109/TASE.2017.2693688 (2018)

  24. Jain, N., Menache, I., Naor, J.S., Yaniv, J.: Near-optimal scheduling mechanisms for deadline-sensitive jobs in large computing clusters. ACM Trans. Parallel Comput. https://doi.org/10.1145/2742343 (2015)

  25. Elgendy, I.A., Zhang, W., Tian, Y.-C., Li, K.: Resource allocation and computation offloading with data security for mobile edge computing. Futur. Gener. Comput. Syst. 100, 531–541 (2019)

    Article  Google Scholar 

  26. Li, C., Tang, J., Luo, Y.: Hybrid cloud adaptive scheduling strategy for heterogeneous workloads. J. Grid Comput. :419–446 (2019)

  27. Van Stee, R., La Poutré, H.: Minimizing the total completion time on-line on a single machine, using restarts. J. Algorithms. https://doi.org/10.1016/j.jalgor.2004.10.001 (2005)

  28. Huang, Z.: Online Makespan Minimization : The Power of Restart. arXiv:1806.02207 (2018)

  29. Zhang, R., Wu, K., Li, M., Wang, J.: Online resource scheduling under concave pricing for cloud computing. IEEE Trans. Parallel Distrib. Syst. 27(4), 1131–1145 (2016)

    Article  Google Scholar 

  30. Zheng, Z., Ness, S.B.: Online multi-resource allocation for deadline sensitive jobs with partial values in the cloud. In: IEEE Infocom -the IEEE International Conference on Computer Communications, pp 1–9 (2016)

  31. Zhang, J., Yang, X., Xie, N., Zhang, X., Vasilakos, A.V., Li, W.: An online auction mechanism for time-varying multidimensional resource allocation in clouds. Futur. Gener. Comput. Syst. 111, 27–38 (2020)

    Article  Google Scholar 

  32. Mashayekhy, L., Fisher, N., Grosu, D.: Truthful mechanisms for competitive reward-based scheduling. IEEE Trans. Comput. https://doi.org/10.1109/TC.2015.2479598 (2016)

  33. Zhang, H., Li, B., Jiang, H., Liu, F., Vasilakos, A., Liu, J.: A framework for truthful online auctions in cloud computing with heterogeneous user demands. IEEE Trans. Comput. 65(3), 805–818 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhang, J., Xie, N., Zhang, X., Li, W.: An online auction mechanism for cloud computing resource allocation and pricing based on user evaluation and cost. Futur. Gener. Comput. Syst. 89, 286–299 (2018)

    Article  Google Scholar 

  35. Mashayekhy, L., Nejad, M., Grosu, D., Vasilakos, A.: An online mechanism for resource allocation and pricing in clouds. IEEE Trans. Comput. 65(4), 1172–1184 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zhang, X., Huang, Z., Wu, C., Li, Z., Francis, C.: Online auctions in IaaS clouds: welfare and profit maximization with server costs. In: IEEE/ACM Transactions on Networking, pp 1034–1047 (2015)

Download references

Acknowledgments

The authors thank IBM for providing a full version of CPLEX12 that does not set limitations on solving for optimal solutions. We thank the Alibaba Global Scheduling Algorithm Contest for providing the raw time-varying resource allocation dataset. This work is supported in part by the National Natural Science Foundation of China (Nos. 61762091, 62062065 and 11663007), the Project of the Natural Science Foundation of Yunnan Province of China (No. 2019FB142 and 2018ZF017), the Scientific Research Foundation of Yunnan Provincial Department of Education (2017ZZX228), and the Program for Excellent Young Talents, Yunnan University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xie, N., Zhang, X. et al. Strategy-Proof Mechanism for Online Time-Varying Resource Allocation with Restart. J Grid Computing 19, 25 (2021). https://doi.org/10.1007/s10723-021-09563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09563-1

Keywords

Navigation