Skip to main content
Log in

Evaluating ASP and Commercial Solvers on the CSPLib

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper deals with four solvers for combinatorial problems: the commercial state-of-the-art solver ILOG oplstudio, and the research answer set programming (ASP) systems dlv, smodels and cmodels. The first goal of this research is to evaluate the relative performance of such systems when used in a purely declarative way, using a reproducible and extensible experimental methodology. In particular, we consider a third-party problem library, i.e., the CSPLib, and uniform rules for modelling and instance selection. The second goal is to analyze the marginal effects of popular reformulation techniques on the various solving technologies. In particular, we consider structural symmetry breaking, the adoption of global constraints, and the addition of auxiliary predicates. Finally, we evaluate, on a subset of the problems, the impact of numbers and arithmetic constraints on the different solving technologies. Results show that there is not a single solver winning on all problems, and that reformulation is almost always beneficial: symmetry-breaking may be a good choice, but its complexity has to be carefully chosen, by taking into account also the particular solver used. Global constraints often, but not always, help opl, and the addition of auxiliary predicates is usually worth, especially when dealing with ASP solvers. Moreover, interesting synergies among the various modelling techniques exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bosch, R., & Trick, M. (2002). Constraint programming and hybrid formulations for three life designs. In Proceedings of the fourth international workshop on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2002) (pp. 77–91). Le Croisic.

  2. Cadoli, M., & Mancini, T. (2006). Automated reformulation of specifications by safe delay of constraints. Artificial Intelligence, 170(8–9), 779–801.

    Article  MATH  MathSciNet  Google Scholar 

  3. Cadoli, M., & Mancini, T. (2007). Using a theorem prover for reasoning on constraint problems. Applied Artificial Intelligence, 21(4/5), 383–404.

    Google Scholar 

  4. Cadoli, M., Mancini, T., Micaletto, D., & Patrizi, F. (2006). Evaluating ASP and commercial solvers on the CSPLib. In Proceedings of the seventeenth european conference on artificial intelligence (ECAI 2006) (pp. 68–72). IOS Press.

  5. Cadoli, M., Mancini, T., & Patrizi, F. (2006). SAT as an effective solving technology for constraint problems. In Proceedings of the sixteenth international symposium on methodologies for intelligent systems (ISMIS 2006). Lecture Notes in Computer Science (Vol. 4203, pp. 540–549). Bari, Italy: Springer.

  6. Cadoli, M., & Schaerf, A. (2005). Compiling problem specifications into SAT. Artificial Intelligence, 162, 89–120.

    Article  MathSciNet  Google Scholar 

  7. Castillo, E., Conejo, A. J., Pedregal, P., Garca, R., & Alguacil, N. (2001). Building and solving mathematical programming models in engineering and science. John Wiley & Sons.

  8. Cheng, B. M. W., Choi, K. M. F., Lee, J. H.-M., & Wu, J.C.K. (1999). Increasing constraint propagation by redundant modeling: An experience report. Constraints, 4(2), 167–192.

    Article  MATH  Google Scholar 

  9. Crawford, J. M., Ginsberg, M. L., Luks, E. M., & Roy, A. (1996). Symmetry-breaking predicates for search problems. In Proceedings of the fifth international conference on the principles of knowledge representation and reasoning (KR’96) (pp. 148–159). Morgan Kaufmann.

  10. Dewdney, A. K. (1987). The game life aquires some successors in three dimensions. Science American, 224(2), 112–118.

    Article  Google Scholar 

  11. Dovier, A., Formisano, A., & Pontelli, E. (2005). A comparison of CLP(FD) and ASP solutions to NP-complete problems. In Proceedings of the twentyfirst international conference on logic programming (ICLP 2005). Lecture Notes in Computer Science (Vol. 3668, pp. 67–82). Springer.

  12. Ellman, T. (1993). Abstraction via approximate symmetry. In Proceedings of the thirteenth international joint conference on artificial intelligence (IJCAI’93) (pp. 916–921). Morgan Kaufmann.

  13. Fernández, A. J., & Hill, P. M. (2000). A comparative study of eight constraint programming languages over the Boolean and Finite Domains. Constraints, 5(3), 275–301.

    Article  MATH  MathSciNet  Google Scholar 

  14. Finkel, R. A., Marek, V. W., & Truszczynski, M. (2004). Constraint Lingo: Towards high-level constraint programming. Software—Practice and Experience, 34(15), 1481–1504.

    Article  Google Scholar 

  15. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., et al. (2002). Breaking row and column symmetries in matrix models. In Proceedings of the eighth international conference on principles and practice of constraint programming (CP 2002). Lecture Notes in Computer Science (Vol. 2470, p. 462). Springer.

  16. Fourer, R., Gay, D. M., & Kernigham, B. W. (1993). AMPL: A modeling language for mathematical programming. International Thomson Publishing.

  17. Freuder, E. C., & Sabin, D. (1997). Interchangeability supports abstraction and reformulation for multi-dimensional constraint satisfaction. In Proceedings of the fourteenth national conference on artificial intelligence (AAAI’97) (pp. 191–196). AAAI Press/The MIT Press.

  18. Giunchiglia, F., & Walsh, T. (1992). A theory of abstraction. Artificial Intelligence, 57, 323–389.

    Article  MATH  MathSciNet  Google Scholar 

  19. Gu, J., Purdom, P., Franco, J., & Wah, B. (1997). Algorithms for the satisfiability (SAT) problem: A survey. In Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science (pp. 19–152). American Mathematical Society.

  20. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., et al. (2006). The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic, 7(3), 499–562.

    Article  MathSciNet  Google Scholar 

  21. Lierler, Y., & Maratea, M. (2004). Cmodels-2: SAT-based Answer Set Solver enhanced to non-tight programs. In V. Lifschitz & I. Niemelä (Eds.), Proceedings of the seventh international conference on logic for programming and nonmonotonic reasoning (LPNMR 2004). Lecture Notes in Computer Science (Vol. 2923, pp. 346–350). Fort Lauderdale, FL, USA: Springer.

  22. Lin, F., & Yuting, Z. (2004). ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence, 157(1–2), 115–137.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mancini, T., & Cadoli, M. (2005). Detecting and breaking symmetries by reasoning on problem specifications. In Proceedings of the sixth international symposium on abstraction, reformulation and approximation (SARA 2005). Lecture Notes in Artificial Intelligence (Vol. 3607, pp. 165–181). Springer.

  24. Mancini, T., & Cadoli, M. (2007). Exploiting functional dependencies in declarative problem specifications. Artificial Intelligence, 171, 985–1010.

    Article  MathSciNet  MATH  Google Scholar 

  25. Neumaier, A., Shcherbina, O., Huyer, W., & Vinkó, T. (2005). A comparison of complete global optimization solvers. Mathematical Programming, 103(2), 335–356.

    Article  MATH  MathSciNet  Google Scholar 

  26. Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4), 241–273.

    Article  MATH  MathSciNet  Google Scholar 

  27. Pelov, N., De Mot, E., & Denecker, M. (2000). Logic Programming approaches for representing and solving Constraint Satisfaction Problems: A comparison. In M. Parigot & A. Voronkov (Eds.), Proceedings of the seventh international conference on logic for programming and automated reasoning (LPAR 2000). Lecture Notes in Computer Science (Vol. 1955, pp. 225–239). Springer.

  28. Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In H. J. Komorowski & Z. W. Ras (Eds.), Proceedings of the seventh international symposium on methodologies for intelligent systems (ISMIS’93). Lecture Notes in Computer Science (Vol. 689, pp. 350–361). Springer.

  29. Ramani, A., Aloul, F. A., Markov, I. L., & Sakallak, K. A. (2004). Breaking instance-independent symmetries in exact graph coloring. In Proceedings of design automation and test conference in europe (DATE 2004) (pp. 324–331). IEEE Computer Society Press.

  30. Régin, J.-C. (2003). Global constraints and filtering algorithms. In M. Milano (Ed.) Constraint and Integer Programming – Toward a Unified Methodology, Operations Research/Computer Science Interfaces, Vol. 27, chapter 4. Kluwer Academic Publisher.

  31. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., & Nguyen, T.-V. (2003). Benchmarking global optimization and constraint satisfaction codes. In Proceedings of the first international workshop on global constraint optimization and constraint satisfaction (COCOS 2002). Lecture Notes in Computer Science (Vol. 2861, pp. 211–222). Springer.

  32. Smith, B. M. (2002). A dual graph translation of a problem in ‘life’. In Proceedings of the eighth international conference on principles and practice of constraint programming (CP 2002). Lecture Notes in Computer Science (Vol. 2470, pp. 402–414). Springer.

  33. Smith, B. M., Stergiou, K., & Walsh, T. (2000). Using auxiliary variables and implied constraints to model non-binary problems. In Proceedings of the seventeenth national conference on artificial intelligence (AAAI 2000) (pp. 182–187). AAAI Press/The MIT Press.

  34. Smolka, G. (1995). The Oz programming model. In Computer Science Today: Recent Trends and Developments. Lecture Notes in Computer Science (Vol. 1000, pp. 324–343). Springer.

  35. Ullman, J. D. (1988). Principles of database and knowledge base systems, Vol. 1. Computer Science Press.

  36. Van Hentenryck, P. (1999). The OPL optimization programming language. The MIT Press.

  37. Wallace, M., Schimpf, J., Shen, K., & Harvey, W. (2004). On benchmarking constraint logic programming platforms. Response to Fernández and Hill’s “A comparative study of eight constraint programming languages over the Boolean and Finite Domains”. Constraints, 9(1), 5–34

    Article  MATH  MathSciNet  Google Scholar 

  38. Walsh, T. (2001). Permutation problems and channelling constraints. In R. Nieuwenhuis & A, Voronkov (Eds.), Proceedings of the eighth international conference on logic for programming and automated reasoning (LPAR 2001). Lecture Notes in Computer Science (Vol. 2250, pp. 377–391). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Mancini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancini, T., Micaletto, D., Patrizi, F. et al. Evaluating ASP and Commercial Solvers on the CSPLib. Constraints 13, 407–436 (2008). https://doi.org/10.1007/s10601-007-9028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9028-6

Keywords

Navigation