Skip to main content
Log in

Double auction mechanisms in edge computing resource allocation for blockchain networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Blockchain, a promising technology, has been extensively applied in numerous fields, such as network security, finance, and medical care. However, due to the low power consumption and weak computing power of the mobile environment, the application of blockchain in this environment still faces many challenges. Therefore, edge computing has been introduced to improve the computing power of mobile devices and encourage more mobile edge devices to join the blockchain network. In this paper, we propose a double auction model to address the issue of edge computing resource allocation in blockchain networks. Based on this auction model, we first propose a truthful double auction mechanism based on breakeven (TDAMB) to determine matched pairs of edge computing service providers (ECSPs) and miners. Furthermore, to improve the system efficiency, we propose a double auction mechanism based on a critical value (DAMCV). We also theoretically analyze the individual rationality, budget balance and truthfulness of the proposed mechanisms. Extensive experiments show that TDAMB and DAMCV have good effects on edge computing resource allocation in blockchain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The code generated or used during the study are available from the corresponding author on reasonable request.

References

  1. Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secure Comput. 15(5), 840–852 (2018). https://doi.org/10.1109/TDSC.2016.2616861

    Article  Google Scholar 

  2. Baranwal, G., Kumar, D., Vidyarthi, D.P.: Blockchain based resource allocation in cloud and distributed edge computing: a survey. Comput. Commun. (2023)

  3. Chen, Z., Huang, H., Ye, Sun, et al.: True-MCSA: a framework for truthful double multi-channel spectrum auctions. IEEE Trans. Wirel. Commun. 12(8), 3838–3850 (2013). https://doi.org/10.1109/TWC.2013.071113.121172

    Article  Google Scholar 

  4. Faqiry, M.N., Das, S.: Double auction with hidden user information: application to energy transaction in microgrid. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2326–2339 (2019)

    Article  Google Scholar 

  5. Feng, X., Lin, P., Zhang, Q.: Flexauc: serving dynamic demands in a spectrum trading market with flexible auction. IEEE Trans. Wirel. Commun. 14(2), 821–830 (2015). https://doi.org/10.1109/TWC.2014.2360831

    Article  Google Scholar 

  6. Dai, Y., Guo, S., Guo, S., et al.: Blockchain meets edge computing: stackelberg game and double auction based task offloading for mobile blockchain. IEEE Trans. Veh. Technol. 69(5), 5549–5561 (2020). https://doi.org/10.1109/TVT.2020.2982000

    Article  Google Scholar 

  7. Houy, N.: The bitcoin mining game. SSRN Electron. J. (2014). https://doi.org/10.2139/ssrn.2407834

    Article  Google Scholar 

  8. Jiao, Y., Wang, P., Niyato, D., et al.: Social welfare maximization auction in edge computing resource allocation for mobile blockchain. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422632

  9. Jiao, Y., Wang, P., Niyato, D., et al.: Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks. IEEE Trans. Parallel Distrib. Syst. 30(9), 1975–1989 (2019). https://doi.org/10.1109/TPDS.2019.2900238

    Article  Google Scholar 

  10. Jin, A.L., Song, W., Zhuang, W.: Auction-based resource allocation for sharing cloudlets in mobile cloud computing. IEEE Trans. Emerging Top. Comput. 6(1), 45–57 (2018). https://doi.org/10.1109/TETC.2015.2487865

    Article  Google Scholar 

  11. Jing, W., Fu, X., Liu, P., et al.: Joint resource trading and computation offloading in blockchain enhanced d2d-assisted mobile edge computing. Clust. Comput. 26(1), 635–649 (2023)

    Article  Google Scholar 

  12. Klemperer, P.: What Really Matters in Auction Design: The European Spectrum Auctions (2000)

  13. Lehmann, D., Oćallaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002). https://doi.org/10.1145/585265.585266

    Article  MathSciNet  Google Scholar 

  14. Li, Q., Jia, X., Huang, C., et al.: A dynamic combinatorial double auction model for cloud resource allocation. IEEE Trans. Cloud Comput. 8, 1–2 (2022). https://doi.org/10.1109/TCC.2022.3231249

    Article  Google Scholar 

  15. Li, S.N., Yang, Z., Tessone, C.J.: Proof-of-work cryptocurrency mining: a statistical approach to fairness. In: 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 156–161 (2020). https://doi.org/10.1109/ICCCWorkshops49972.2020.9209934

  16. Liu, M., Yu, F.R., Teng, Y., et al.: Computation offloading and content caching in wireless blockchain networks with mobile edge computing. IEEE Trans. Vehicular Technol. 67(11), 11008–11021 (2018). https://doi.org/10.1109/TVT.2018.2866365

    Article  Google Scholar 

  17. Liu, X., Wang, W., Niyato, D., et al.: Evolutionary game for mining pool selection in blockchain networks. IEEE Wirel. Commun. Lett. 7(5), 760–763 (2018). https://doi.org/10.1109/LWC.2018.2820009

    Article  Google Scholar 

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). Available: https://bitcoin.org/bitcoin.pdf

  19. Patel, Y.S., Nighojkar, A., Misra, R.: Truthful double auction based VM allocation for revenue-energy trade-off in cloud data centers. In: 2019 National Conference on Communications (NCC), pp. 1–6 (2019). https://doi.org/10.1109/NCC.2019.8732201

  20. Putnam, J.: Bitcoin and cryptocurrency technologies: a comprehensive introduction. Comput. Rev. 5, 58 (2017)

    Google Scholar 

  21. Sarenche, R., Salmasizadeh, M., Ameri, M.H., et al.: A secure and privacy-preserving protocol for holding double auctions in smart grid. Inform. Sci. 557, 108–129 (2021). https://doi.org/10.1016/j.ins.2020.12.038

    Article  MathSciNet  Google Scholar 

  22. Singh, R., Dwivedi, A.D., Srivastava, G., et al.: A game theoretic analysis of resource mining in blockchain. Clust. Comput. 23, 2035–2046 (2020)

    Article  Google Scholar 

  23. Sun, W., Liu, J., Yue, Y., et al.: Double auction-based resource allocation for mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform. 14(10), 4692–4701 (2018). https://doi.org/10.1109/TII.2018.2855746

    Article  Google Scholar 

  24. Xiong, Z., Zhang, Y., Niyato, D., et al.: When mobile blockchain meets edge computing. IEEE Commun. Mag. 56(8), 33–39 (2018). https://doi.org/10.1109/MCOM.2018.1701095

    Article  Google Scholar 

  25. Xiong, Z., Kang, J., Niyato, D., et al.: Cloud/edge computing service management in blockchain networks: multi-leader multi-follower game-based admm for pricing. IEEE Trans. Serv. Comput. 13(2), 356–367 (2020). https://doi.org/10.1109/TSC.2019.2947914

    Article  Google Scholar 

  26. Xu, L., Ge, M., Wu, W.: Edge server deployment scheme of blockchain in iovs. IEEE Trans. Reliab. 71(1), 500–509 (2022). https://doi.org/10.1109/TR.2022.3142776

    Article  Google Scholar 

  27. Xue, H., Chen, D., Zhang, N., et al.: Integration of blockchain and edge computing in internet of things: a survey. Future Generation Comput. Syst. 144, 307–326 (2023)

    Article  Google Scholar 

  28. Yang, R., Yu, F.R., Si, P., et al.: Integrated blockchain and edge computing systems: a survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 21(2), 1508–1532 (2019). https://doi.org/10.1109/COMST.2019.2894727

    Article  Google Scholar 

  29. Yao, H., Mai, T., Wang, J., et al.: Resource trading in blockchain-based industrial internet of things. IEEE Trans. Ind. Inform. 15(6), 3602–3609 (2019). https://doi.org/10.1109/TII.2019.2902563

    Article  Google Scholar 

  30. Zhang, J., Yang, X., Xie, N., et al.: An online auction mechanism for time-varying multidimensional resource allocation in clouds. Future Generation Comput. Syst. 111, 27–38 (2020). https://doi.org/10.1016/j.future.2020.04.029

    Article  Google Scholar 

  31. Zhang, J., Xie, N., Zhang, X., et al.: Strategy-proof mechanism for online time-varying resource allocation with restart. J. Grid Comput. 19(3), 1–20 (2021)

    Article  Google Scholar 

  32. Zhang, J., Lou, W., Sun, H., et al.: Truthful auction mechanisms for resource allocation in the internet of vehicles with public blockchain networks. Future Gener. Comput. Syst. 132, 11–24 (2022). https://doi.org/10.1016/j.future.2022.02.002

    Article  Google Scholar 

  33. Zhang, J., Zhang, Y., Wu, H., et al.: An ordered submodularity-based budget-feasible mechanism for opportunistic mobile crowdsensing task allocation and pricing. IEEE Trans. Mobile Comput. 2, 1–18 (2022). https://doi.org/10.1109/TMC.2022.3232513

    Article  Google Scholar 

  34. Zuo, Y., Jin, S., Zhang, S., et al.: Blockchain storage and computation offloading for cooperative mobile-edge computing. IEEE Internet Things J. 8(11), 9084–9098 (2021). https://doi.org/10.1109/JIOT.2021.3056656

    Article  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China (Nos. 62062065, 12071417, 61962061), the Education Foundation of Yunnan Province of China (2022J002) and the Program for Excellent Young Talents, Yunnan, China

Author information

Authors and Affiliations

Authors

Contributions

NX and WL proposed the methods and wrote the manuscript; JZ proposed some ideas and proved some theorems; XZ proposed the problem, reviewed and modified the manuscript; NX, JZ, XZ, WL have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Weidong Li.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Zhang, J., Zhang, X. et al. Double auction mechanisms in edge computing resource allocation for blockchain networks. Cluster Comput 27, 3017–3035 (2024). https://doi.org/10.1007/s10586-023-04129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04129-0

Keywords

Navigation