Skip to main content

Advertisement

Log in

A novel machine-learning algorithm to estimate the position and size of myocardial infarction for MRI sequence

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Early and accurate assessment of myocardial abnormalities is of utmost importance in the diagnosis of myocardial infarction (MI). In this study, we proposed a machine-learning and image motion statistic based approach to automating the detection and localization of MI area in magnetic resonance images. Unlike the existing techniques, the proposed method that could be directly acquired position and size of MI area with sub-pixel precision. Standard clinical magnetic resonance image and delayed enhancement imaging data of 58 patients with MI were used for developing this algorithm. First, we are located and extracted the LV from the original MR image. Then, we using a novel Optical Flow algorithm to building statistical image motion features include the motion trajectories of each Point on myocardium in whole frames. In the end, we using these results as inputs to a support vector machine classifier, which can obtain an MI area assessment of the myocardium. Compared to the pixel by pixel in delayed enhancement imaging, the proposed algorithm yielded the highest classification accuracy of 93.34% and the kappa measure of 0.74. The field experiments our method performs significantly better than other recent methods, and can lead to a promising diagnostic support tool to assists clinicians, particularly for novice readers with limited experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Afshin M, Ayed IB, Punithakumar K, Law MW, Islam A, Goela A, Peters TM, Li S (2014) Regional assessment of cardiac left ventricular myocardial function via MRI statistical features. IEEE Trans Med Imaging 33(2):481–494

    Article  Google Scholar 

  2. Amini AA, Chen Y, Elayyadi M, Radeva P (2001) Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces. IEEE Trans Med imaging 20(2):94–103

    Article  Google Scholar 

  3. Bai W, Peressutti D, Oktay O, Shi W, O’egan DP, King AP, Rueckert D (2015) Learning a global descriptor of cardiac motion from a large cohort of 1000+ normal subjects. In: International conference on functional imaging and modeling of the heart. Springer, Berlin, pp 3–11

  4. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77

    Article  Google Scholar 

  5. Bijnens B, Claus P, Weidemann F, Strotmann J, Sutherland GR (2007) Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 116(21):2453–2464

    Article  Google Scholar 

  6. Bosch JG, Nijland F, Mitchell SC, Lelieveldt BP, Kamp O, Reiber JH, Sonka M (2005) Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormalities in echocardiograms1. Acad Radiol 12(3):358–367

    Article  Google Scholar 

  7. Burton A, Radford J (1978) Thinking in perspective: critical essays in the study of thought processes, vol 646. Routledge, Abingdon

    Google Scholar 

  8. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  9. Charles R (2000) Applying computational mechanics analysis to biological systems. In: 18th applied aerodynamics conference, p 4338

  10. Chéhikian A (1992) Optimal algorithms for low-pass and laplacian image pyramids computation. Traitement du Signal 9:297–297

    Google Scholar 

  11. Eichstaedt H, Felix R, Dougherty F, Langer M, Rutsch W, Schmutzler H (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-dtpa. Clin Cardiol 9(11):527–535

    Article  Google Scholar 

  12. Frangl A, Rueckert D, Duncan JS (2002) Three-dimensional cardiovascular image analysis. IEEE Trans Med Imaging 21(9):1005–1010

    Article  Google Scholar 

  13. Garcia-Barnes J, Gil D, Badiella L, Hernandez-Sabate A, Carreras F, Pujades S, Marti E (2010) A normalized framework for the design of feature spaces assessing the left ventricular function. IEEE Trans Med Imaging 29(3):733–745

    Article  Google Scholar 

  14. Hoffmann R, von Bardeleben S, Kasprzak JD, Borges AC, ten Cate F, Firschke C, Lafitte S, Al-Saadi N, Kuntz-Hehner S, Horstick G et al (2006) Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods. J Am Coll Cardiol 47(1):121–128

    Article  Google Scholar 

  15. Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  Google Scholar 

  16. Hsu C-W, Chang C-C, Lin C-J (2008) A practical guide to support vector classification. BJU Int 101:1396–1400

    Article  Google Scholar 

  17. Jolly MP (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 110–118

  18. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105(2):162–167

    Article  Google Scholar 

  19. Lei C, Yang YH (2009) Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 1562–1569

  20. Leung KE, Bosch JG (2007) Localized shape variations for classifying wall motion in echocardiograms. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 52–59

  21. Lipton MJ, Bogaert J, Boxt LM, Reba RC (2002) Imaging of ischemic heart disease. Eur Radiol 12(5):1061–1080

    Article  Google Scholar 

  22. Mansor S, Noble JA (2008) Local wall motion classification of stress echocardiography using a hidden markov model approach. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, 2008. ISBI 2008. IEEE, pp 1295–1298

  23. örg Barkhausen J, Ebert W, Weinmann HJ et al (2002) Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 39(8):1392–1398

    Article  Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet 9(1):62–66

    Article  Google Scholar 

  25. Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184

    Article  Google Scholar 

  26. Qian Z, Liu Q, Metaxas DN, Axel L (2011) Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis. IEEE Trans Med Imaging 30(12):2017–2029

    Article  Google Scholar 

  27. Shi P, Liu H (2003) Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters. Med Image Anal 7(4):445–464

    Article  Google Scholar 

  28. Suinesiaputra A, Ablin P, Alba X et al (2018) Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE J Biomed Health Inform 22(2):503–515

    Article  Google Scholar 

  29. Suinesiaputra A, Frangi AF, Kaandorp TA, Lamb HJ, Bax JJ, Reiber JH, Lelieveldt BP (2009) Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans Med Imaging 28(4):595–607

    Article  Google Scholar 

  30. Viera AJ, Garrett JM et al (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363

    Google Scholar 

  31. Wang H, Amini AA (2012) Cardiac motion and deformation recovery from MRI: a review. IEEE Trans Med Imaging 31(2):487–503

    Article  Google Scholar 

  32. Xavier M, Lalande A, Walker PM, Brunotte F, Legrand L (2012) An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-MR examinations. IEEE Trans Inf Technol Biomed 16(5):859–868

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Key Research and Development Program of China (Grant No. 2016YFC1300300), The Natural Science Foundation of Jiangsu Province of China (Grant BK20150931). National Natural Science Foundation of China (Grant Nos. 61771464, U1801265, 61702275, 41775008, 61673020), Shen Zhen Research and Innovation Funding (Grant No. JCYJ20170307165309009), Provincial Natural Science Research Program of the Higher Education Institutions of Anhui Province (Grant No. KJ2016A016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heye Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Xu, L., Zhang, H. et al. A novel machine-learning algorithm to estimate the position and size of myocardial infarction for MRI sequence. Computing 101, 653–665 (2019). https://doi.org/10.1007/s00607-018-0675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-018-0675-9

Keywords

Mathematics Subject Classification

Navigation