Abstract
With the development of non-contact fluorescence molecular tomography (FMT) imaging system, multi-fluorescence projections data can be obtained to improve the quality of reconstruction images. However, it remains a challenging issue to obtain fast and accurate reconstruction of the fluorescent probe distribution due to the large computational burden and the ill-posed nature of the inverse problem. In this work, we present an innovative method associating dual augmented lagrangian method (DALM) with a linear regression approximation (LRA) strategy to locate the fluorescence probe, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Numerical experiments based on a heterogeneous phantom are performed to validate the feasibility of the proposed method. The results demonstrate that the proposed method can achieve accurate target localization, and satisfactory computational efficiency. Furthermore, this approach is robust even under quite ill-posed condition.
Similar content being viewed by others
References
Cherry, S.R.: In vivo molecular and genomic imaging: new challenges for imaging physics. Phys. Med. Biol. 49(3), R13 (2004)
Ntziachristos, V., et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23(3), 313–320 (2005)
Fan-Minogue, H., Cao, Z., Paulmurugan, R., Chan, C.T., Massoud, T.F., Felsher, D.W., Gambhir, S.S.: Noninvasive molecular imaging of c-Myc activation in living mice. Proc. Natl. Acad. Sci. USA 107(36), 15892–15897 (2010)
Ntziachristos, V.: Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006)
Ale, A., Ermolayev, V., Herzog, E., Cohrs, C., de Angelis M.H., Ntziachristos, V.: FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods. 9(6), 615–620 (2012)
Song, X., et al.: Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt. Exp. 15, 18300–18317 (2007)
Shi, J., et al.: Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient. Opt. Lett. 38, 3696–3699 (2013)
Han, D., et al.: A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization. Opt. Exp. 18, 8630–8646 (2010)
Ripoll, J.: Hybrid Fourier-real space method for diffuse optical tomography. Opt. Lett. 35(5), 688–690 (2010)
Rudge, T.J., Soloviev, V.Y., Arridge, S.R.: Fast image reconstruction in fluoresence optical tomography using data compression. Opt. Lett. 35(5), 763–765 (2010)
Ducros, N., Andrea, C.D., Valentini, G., Rudge, T., Arridge, S., Bassi, A.: Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination. Opt. Lett. 35(21), 3676–3678 (2010)
Ducros, N., Bassi, A., Valentini, G., Schweiger, M., Arridge, S., DAndrea, C.: Multiple-view fluorescence optical tomography reconstruction using compression of experimental data. Opt. Lett. 36(8), 1377–1379 (2011)
Shi, J., et al.: Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization. J. Biomed. Opt. 20(5), 055004 (2015)
Cao, X., Wang, X., Zhang, B., et al.: Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction. Biomed. Opt. Express. 4(1), 1–14 (2013)
Zhu, D., Li, C.: Accelerated image reconstruction in fluorescence molecular tomography using a nonuniform updating scheme with momentum and ordered subsets methods. J. Biomed. Opt. 21(1), 16004 (2016)
Markel, V.A., Mital, V., Schotland, J.C.: Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition. J. Opt. Soc. Am. A. 20(5), 890–902 (2003)
Zacharopoulos, A.D., Svenmarker, P., Axelsson, J., et al.: A matrix-free algorithm for multiple wavelength fluorescence tomography. Opt. Express. 17(5), 3025–3035 (2010)
Lasser, T., Ntziachristos, V.: Optimization of 360o projection fluorescence molecular tomography. Med. Image Anal. 11(4), 389–399 (2007)
Wang, D., Liu, X., Bai, J.: Analysis of fast full angle fluorescence diffuse optical tomography with beamforming illumination. Opt. Exp. 17(24), 21376–21395 (2009)
Zhu, D., Li, C.: Accelerated image reconstruction in fluorescence molecular tomography using a nonuniform updating scheme with momentum and ordered subsets methods. J. Biomed. Opt. 21(1), 016004 (2016)
Ye, J., Chi, C., Xue, Z., et al.: Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method.[J]. Biomed. Opt. Express. 5(2), 387–406 (2014)
He, X., Dong, F., Yu, J., et al.: Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 32(11), 1928–1935 (2015)
Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinvesky, D.: An interior-point method for large-scale l-regularized least squares. IEEE J Sel Top Signal Process. 1, 606–617 (2007)
Klose, A.D., Larsen, E.W.: Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220(1), 441–470 (2006)
Tan, Y., Jiang, H.: DOT guided fluorescence molecular tomography of arbitrarily shaped objects. Med. Phys. 35, 5703–5707 (2008)
Panasyuk, G.Y., Wang, Z.M., Schotland, J.C., Markel, V.A.: Fluorescent optical tomography with large data sets. Opt. Lett. 33, 1744–1746 (2008)
Qiao, Y., Hong, Q., Qin, C., et al.: Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation. Opt. Commun. 351, 75–84 (2015)
Wang, X., Cao, X., Zhang, B., Liu, F., Luo, J., Bai, J.: A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method. Med. Biol. Eng. Comput. 51, 7–17 (2013)
Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific, Belmont (1999)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model Simul. 4(4), 1168–1200 (2005)
Hanke, M., Groetsch, C.W.: Nonstationary iterated Tikhonov regularization. J. Optim. Theor. Appl. 98(1), 37–53 (1998)
Faber, V., Manteuffel, A., White, A.B. Jr., Wing, G.M.: Asymptotic behavior of singular values and functions of certain convolution operators. Comput. Math. Appl. 12, 37–52 (1989)
Han, D., Tian, J., Qin, C., et al.: A fast reconstruction method for fluorescence molecular tomography based on improved iterated shrinkage. Proc. SPIE Int. Soc. Opt. Eng. 7965(1):19–23 (2011)
Zhang, G., He, W., Pu, H., et al.: Acceleration of dynamic fluorescence molecular tomography with principal component analysis. Biomed. Opt. Express. 6(6), 2036–2055 (2015)
Shang, M., Nie, C.: A shrinkage-thresholding projection method for sparsest solutions of LCPs. J. Inequal. Appl. 2014(1), 51 (2014)
Fang, E., Wang, J., Hu, D., et al.: Adaptive monotone fast iterative shrinkage thresholding algorithm for fluorescence molecular tomography. IET Sci. Meas. Technol. 9(5), 587–595 (2015)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology. 26(3), 297–302 (1945)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, B., Zhang, X., Hou, Y. et al. Efficient image reconstruction for fluorescence molecular tomography via linear regression approximation scheme with dual augmented Lagrangian method. Multimedia Systems 25, 135–145 (2019). https://doi.org/10.1007/s00530-017-0575-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-017-0575-4