Skip to main content

Advertisement

Log in

A Polynomial Time Approximation Scheme for the Closest Shared Center Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Mutation region detection is the first step of searching for a disease gene and has facilitated the identification of several hundred human genes that can harbor mutations leading to a disease phenotype. Recently, the closest shared center problem (CSC) was proposed as a core to solve the mutation region detection problem when the pedigree is not given (Ma et al. in IEEE ACM Trans Comput Biol Bioinform 9(2):372–384, 2012). A ratio-2 approximation algorithm was proposed for the CSC problem in Ma et al. (IEEE ACM Trans Comput Biol Bioinform 9(2):372–384, 2012). In this paper, we will design a polynomial time approximation scheme for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abecasis, G., Cherny, S., Cookson, W., Cardon, L.: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002)

    Article  Google Scholar 

  2. Gudbjartsson, D., Jonasson, K., Frigge, M., Kong, A.: Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–13 (2000)

    Article  Google Scholar 

  3. Lander, E., Green, P.: Construction ofmultilocus genetic linkage maps in humans. Proc. Natl. Acad. Sci. 84, 2363–2367 (1987)

    Article  Google Scholar 

  4. Kruglyak, L., Daly, M., Reeve-Daly, M., Lander, E.: Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1995)

    Google Scholar 

  5. Lathrop, G., Lalouel, J., Julier, C., Ott, J.: Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. 81(11), 3443–3446 (1984)

    Article  Google Scholar 

  6. Leykin, I., Hao, K., Cheng, J., Meyer, N., Pollak, M., Smith, R., Wong, W., Rosenow, C., Li, C.: Comparative linkage analysis and visualization of high-density oligonucleotide SNP array data. BMC Genet. 6, 7 (2005)

    Article  Google Scholar 

  7. Cai, Z., Sabaa, H., Wang, Y., Goebel, R., Wang, Z., Xu, J., Stothard, P., Lin, G.: Most parsimonious haplotype allele sharing determination. BMC Bioinform. 10, 115 (2009)

    Article  Google Scholar 

  8. Lin, G., Wang, Z., Wang, L., Lau, Y.-L., Yang, W.: Identification of linked regions using high-density SNP genotype data in linkage analysis. Bioinformatics 24(1), 86–93 (2008)

    Article  Google Scholar 

  9. Wang, L., Wang, Z., Yang, W.: Linked region detection using high-density SNP genotype data via theminimum recombinantmodel of pedigree haplotype inference. BMC Bioinform. 10, 216 (2009)

    Article  Google Scholar 

  10. Qian, D., Beckmann, L.: Minimum-recombinant haplotyping in pedigrees. Am. J. Hum. Genet. 70(6), 1434–1445 (2002)

    Article  Google Scholar 

  11. Tapadar, P., Ghosh, S., Majumder, P.: Haplotyping in pedigrees via a genetic algorithm. Hum. Hered. 50, 43–56 (2000)

    Article  Google Scholar 

  12. Zhang, L., Sun, F., Zhao, H.: HAPLORE: a program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics 21, 90–103 (2005)

    Article  Google Scholar 

  13. Doi, L., Li, J., Jiang, T.: Minimum recombinant haplotype configuration on tree pedigrees. In: Proceedings of Workshop on Algorithms in Bioinformatics (WABI), pp. 339–353 (2003)

  14. Li, J., Jiang, T.: Computing theminimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming. J. Comput. Biol. 12(6), 719–739 (2005)

    Article  Google Scholar 

  15. Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. In: Proceedings of the Eighth Annual International Conference on Resaerch in Computational Molecular Biology (RECOMB), San Diego, California, USA, pp. 20–29 (2004)

  16. Xiao, J., Liu, L., Xia, L., Jiang, T.: Fast elimination of redundant linear equations and reconstruction of recombination-freemendelian inheritance on a pedigree. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana USA, pp. 655–664 ( 2007)

  17. Ma, W., Yang, Y., Chen, Z., Wang, L.: Mutation region detection for closely related individuals without a known pedigree using high-density genotype data. IEEE ACM Trans. Comput. Biol. Bioinform. 9(2), 372–384 (2012)

    Article  Google Scholar 

  18. Cui, W., Wang, L.: Identifying mutation regions for closely related individuals without a known pedigree. BMC Bioinform. 13, 146 (2012)

    Article  Google Scholar 

  19. Chen, Z., Ma, W., Wang, L.: The parameterized complexity of the shared center problem. Algorithmica 69(2), 269–293 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gusfield, D.: Inference of haplotypes from samples of diploid populations: complexity and algorithms. J. Comput. Biol. 8(3), 305–323 (2001)

    Article  MathSciNet  Google Scholar 

  21. Gusfield, D.: Haplotype inference by pure parsimony. In: Combinatorial Pattern Matching. Springer, Morelia, Michocan Mexico, pp. 144–155 (2003)

  22. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

  23. Roach, J., Glusman, G., Hubley, R., Montsaroff, S., Holloway, A., Mauldin, D., Srivastava, D., Garg, V., Pollard, K., Galas, D., Hood, L., Smit, A.: Chromosomal haplotypes by genetic phasing of human families. Am. J. Hum. Genet. 89, 382–397 (2011)

    Article  Google Scholar 

  24. Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24, i153 (2008)

    Article  Google Scholar 

  25. Chen, Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 29, 1938–1945 (2013)

    Article  Google Scholar 

  26. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49, 157–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  29. Gillman, D.: A Chernoff bound for randomwalks on expanders. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp. 680–691 (1993)

Download references

Acknowledgments

The work is fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 122511), a grant from City University of Hong Kong (Project No. 9610025) and a grant from National Science Foundation of China (Project No. NSFC 61373048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, L. & Cui, W. A Polynomial Time Approximation Scheme for the Closest Shared Center Problem. Algorithmica 77, 65–83 (2017). https://doi.org/10.1007/s00453-015-0057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0057-z

Keywords

Navigation