Skip to main content
Log in

From a Zoo to a Zoology: Towards a General Theory of Graph Polynomials

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We outline a general theory of graph polynomials which covers all the examples we found in the vast literature, in particular, the chromatic polynomial, various generalizations of the Tutte polynomial, matching polynomials, interlace polynomials, and the cover polynomial of digraphs. We introduce two classes of (hyper)graph polynomials definable in second order logic, and outline a research program for their classification in terms of definability and complexity considerations, and various notions of reducibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M.: The Penrose polynomial of graphs and matroids. In: Surveys in Combinatorics, 2001 (Sussex). London Mathematical Society Lecture Note Series, vol. 288, pp. 11–46. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra Appl. 377, 11–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discret. Math. 190, 39–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. J. Comb. Theory Ser. B 92, 199–233 (2004)

    Article  MATH  Google Scholar 

  6. Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Averbouch, I., Makowsky, J.A.: The complexity of multivariate matching polynomials. Preprint (January 2007). Available at www.cs.technion.ac.il/admlogic/TR/readme.html

  8. Babić, D., Graovac, A., Mohar, B., Pisanski, T.: The matching polynomial of a polygraph. Discret. Appl. Math. 15, 11–24 (1986)

    Article  MATH  Google Scholar 

  9. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. 14, 42–46 (1912)

    Article  MathSciNet  Google Scholar 

  10. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Proceedings of ICALP 2007. Lecture Notes in Computer Science. Springer (2007, to appear)

  11. Bläser, M., Dell, H., Makowsky, J.A.: Algebraic reductions for evaluations of the colored Tutte polynomial. Preprint (January 2007). Available at www.cs.technion.ac.il/admlogic/TR/readme.html

  12. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers. Bull. Am. Math. Soc. 21, 1–46 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Google Scholar 

  14. Bollobás, B.: Modern Graph Theory. Springer, New York (1999)

    Google Scholar 

  15. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Comb. Probab. Comput. 8, 45–94 (1999)

    Article  MATH  Google Scholar 

  16. Bürgisser, P.: On the structure of Valiant’s complexity classes. Discret. Math. Theoret. Comput. Sci. 3, 73–94 (1999)

    MATH  Google Scholar 

  17. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computations in Mathematics, vol. 7. Springer, New York (2000)

    MATH  Google Scholar 

  18. Chow, T.Y.: The path-cycle symmetric function of a digraph. Adv. Math. 118, 71–98 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Comb. Theory Ser. B 65(2), 273–290 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Courcelle, B.: The monadic second-order logic of graphs III: treewidth, forbidden minors and complexity issues. Inf. Theor. 26, 257–286 (1992)

    MATH  MathSciNet  Google Scholar 

  21. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997), Chapter 5

    Google Scholar 

  22. Courcelle, B.: A multivariate interlace polynomial. Preprint arXiv cs/0702016 (January 2007). Available at http://front.math.ucdavis.edu/0702.6016

  23. Courcelle, B., Makowsky, J.A.: Recursive definitions of graph polynomials. Draft manuscript (2006)

  24. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discret. Appl. Math. 108(1–2), 23–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Courcelle, B., Godlin, B., Makowsky, J.A.: Towards a theory of graph polynomials, I: second order definable polynomials (2007, in preparation)

  26. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs, 3rd edn. Johann Ambrosius Barth (1995)

  27. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B. Elsevier, Amsterdam (1990), Chapter 6

    Google Scholar 

  28. Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of Graphs. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  29. Downey, R.G., Fellows, M.F.: Parametrized Complexity. Springer, New York (1999)

    Google Scholar 

  30. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4), 260–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic. Springer, New York (1995)

    Google Scholar 

  32. Ellis-Monaghan, J.: New results for the Martin polynomial. J. Comb. Theory Ser. B 74, 326–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Farr, G.E.: The Go polynomials of a graph. Theor. Comput. Sci. 306, 1–18 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Farrell, E.J.: On a general class of graph polynomials. J. Comb. Theory Ser. B 26, 111–122 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fisher, D.C., Solow, A.E.: Dependence polynomials. Discret. Math. 82, 251–258 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)

    Google Scholar 

  37. Gessel, I.: Generalized rook polynomials and orthogonal polynomials. In: IMA Volumes in Mathematics and Its Applications, vol. 18, pp. 159–176. Springer, New York (1989)

    Google Scholar 

  38. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics. Springer, New York (2001)

    MATH  Google Scholar 

  39. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  40. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140, 26–81 (1998)

    Article  MATH  Google Scholar 

  41. Hodges, W.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  42. Hoede, C., Li, X.: Clique polynomials and independent set polynomials of graphs. Discret. Math. 125, 219–228 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  43. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999)

    MATH  Google Scholar 

  44. Jaeger, F.: Tutte polynomials and link polynomials. Proc. Am. Math. Soc. 103, 647–654 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  45. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108, 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  46. Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. 1. Elsevier, Amsterdam (1990), Chapter 2

    Google Scholar 

  47. Kauffman, L.H.: A Tutte polynomial for signed graphs. Discret. Appl. Math. 25, 105–127 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lavrov, I.A.: Effective inseparability of the set of identically true formulas and the set of formulas with finite counterexamples for certain elementary theories. Algebra i Logika 2, 5–18 (1962) (in Russian)

    MathSciNet  Google Scholar 

  49. Libkin, L.: Elements of Finite Model Theory. Springer, New York (2004)

    MATH  Google Scholar 

  50. Linial, M.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebr. Discret. Methods 7, 331–335 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  51. Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families of coloured Tutte polynomials. Adv. Appl. Math. 32(1–2), 327–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lovasz, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  53. Makowsky, J.A.: Colored Tutte polynomials and Kauffman brackets on graphs of bounded tree width. In: Proceedings of the 12th Symposium on Discrete Algorithms, pp. 487–495. SIAM (2001)

  54. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Log. 126, 1–3 (2004)

    Article  MathSciNet  Google Scholar 

  55. Makowsky, J.A.: Colored Tutte polynomials and Kauffman brackets on graphs of bounded tree width. Discret. Appl. Math. 145(2), 276–290 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Makowsky, J.A.: From a zoo to a zoology: descriptive complexity for graph polynomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK, July 2006. Lecture Notes in Computer Science, vol. 3988, pp. 330–341. Springer, New York (2006)

    Google Scholar 

  57. Makowsky, J.A., Mariño, J.P.: Farrell polynomials on graphs of bounded treewidth. Adv. Appl. Math. 30, 160–176 (2003)

    Article  MATH  Google Scholar 

  58. Makowsky, J.A., Mariño, J.P.: The parametrized complexity of knot polynomials. J. Comput. Syst. Sci. 64(4), 742–756 (2003)

    Article  Google Scholar 

  59. Makowsky, J.A., Meer, K.: On the complexity of combinatorial and metafinite generating functions of graph properties in the computational model of Blum, Shub and Smale. In: CSL’00. Lecture Notes in Computer Science, vol. 1862, pp. 399–410. Springer, New York (2000)

    Google Scholar 

  60. Makowsky, J.A., Zilber, B.: Polynomial invariants of graphs and totally categorical theories. MODNET Preprint no. 21 (2006). Available at http://www.logique.jussieu.fr/modnet/Home/index.hph

  61. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph polynomials on graphs of bounded clique-width. In: Fomin, F.V. (ed.) Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, WG 2006, Bergen, Norway, June 22-23, 2006, Revised Papers. Lecture Notes in Computer Science, vol. 4271, pp. 191–204. Springer, New York (2006)

    Google Scholar 

  62. Meer, K.: Counting problems over the reals. Theor. Comput. Sci. 242(1–2), 41–58 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  63. Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput. 7, 307–321 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  64. Otto, M.: Bounded Variable Logics and Counting—A Study in Finite Models, vol. 9. Springer, New York (1997), IX+183 pages

    MATH  Google Scholar 

  65. Oum, S.: Approximating rank-width and clique-width quickly. In: Graph Theoretic Concepts in Computer Science, WG 2005. Lecture Notes in Computer Science, vol. 3787, pp. 49–58 (2005)

  66. Oxley, J.G., Welsh, D.J.A.: Tutte polynomials computable in polynomial time. Discret. Math. 109, 185–192 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  67. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  68. Petersen, J.: Die Theorie der regulären Graphen. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  69. Pitteloud, P.: Chromatic polynomials and the symmetric group. Graphs Comb. 20, 131–144 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  70. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)

    MATH  Google Scholar 

  71. Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Survey in Combinatorics, 2005. London Mathematical Society Lecture Notes, vol. 327, pp. 173–226 (2005)

  72. Stanley, R.P.: Acyclic orientations of graphs. Discret. Math. 5, 171–178 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  73. Stanley, R.P.: A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111, 166–194 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  74. Sylvester, J.J.: On an application of the new atomic theory to the graphical presentation of the invariants and covariants of binary quantics, with three appendices. Am. J. Math. 1, 161–228 (1878)

    Google Scholar 

  75. Taitslin, M.A.: Effective inseparability of the sets of identically true and finitely refutable formulae of elementary lattice theory. Algebra i Logika 1, 24–38 (1961) (in Russian)

    Google Scholar 

  76. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 21(2), 865–877 (1991)

    Article  Google Scholar 

  77. Trinajstić, N.: Chemical Graph Theory, 2nd edn. CRC Press, Boca Raton (1992)

    Google Scholar 

  78. Tutte, W.T.: Graph-polynomials. Adv. Appl. Math. 32, 5–9 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  79. Tuza, Z.: Graph colorings with local constraints—a survey. Discuss. Math.—Graph Theory 17.2, 161–228 (1997)

    MathSciNet  Google Scholar 

  80. Valiant, L.: Reducibility by algebraic projections. In: Logic and Arithmetic: An International Symposium held in honour of Ernst Specker. L’enseignement Mathématique, vol. 30, pp. 365–380. Université de Genève (1982)

  81. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of 11th STOC, pp. 249–261 (1979)

  82. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  83. Voloshin, V.I.: Coloring Mixed Hypergraphs: Theory, Algorithms and Applications. Fields Institute Monographs, vol. 17. American Mathematical Society (2002)

  84. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. London Mathematical Society Lecture Notes Series, vol. 186. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Makowsky.

Additional information

Partially supported by a Grant of the Fund for Promotion of Research of the Technion–Israel Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowsky, J.A. From a Zoo to a Zoology: Towards a General Theory of Graph Polynomials. Theory Comput Syst 43, 542–562 (2008). https://doi.org/10.1007/s00224-007-9022-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9022-9

Keywords

Navigation