Skip to main content
Log in

Risk neutral and risk averse power optimization in electricity networks with dispersed generation

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Models and algorithms for risk neutral and risk averse power optimization under uncertainty are presented. The approach differs from previous ones by incorporating the transmission network explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson EJ, Philpott AB (2002) Optimal offer construction in electricity markets. Math Oper Res 27: 82–100

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson EJ, Xu H (2002) Necessary and sufficient conditions for optimal offers in electricity markets. SIAM J Control Optim 41: 1212–1228

    Article  MATH  MathSciNet  Google Scholar 

  • Andersson G (2004) Modelling and analysis of electric power systems. Lecture 227-0526-00, Power Systems Laboratory, ETH Zürich

  • CPLEX Interactive Optimizer 9.1.3, ILOG (1997–2005)

  • ddsip (2004) C package for the dual decomposition of stochastic programs with mixed-integer recourse. University of Duisburg-Essen, Department of Mathematics

  • Gollmer R, Nowak MP, Römisch W, Schultz R (2000) Unit commitment in power generation—a basic model and some extensions. Ann Oper Res 96: 167–189

    Article  MATH  Google Scholar 

  • Handschin E (1987) Elektrische Energieübertragungssysteme, vol 2. Hüthig-Verlag, Auflage

    Google Scholar 

  • Handschin E, Neise F, Neumann H, Schultz R (2006) Optimal operation of dispersed generation under uncertainty using mathematical programming. Int J Electrical Power Energy Syst 28: 618–626

    Article  Google Scholar 

  • Helmberg C, Kiwiel KC (2002) A spectral bundle method with bounds. Math Program 93: 173–194

    Article  MATH  MathSciNet  Google Scholar 

  • Müller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, New York

    MATH  Google Scholar 

  • Nowak MP, Römisch W (2000) Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Ann Oper Res 100: 251–272

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak MP, Schultz R, Westphalen M (2005) A stochastic integer programming model for incorporating day-ahead trading of electricity into hydro-thermal unit commitment. Optim Eng 6: 163–176

    Article  MATH  MathSciNet  Google Scholar 

  • Nürnberg R, Römisch W (2002) A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty. Optim Eng 3: 355–378

    Article  MATH  MathSciNet  Google Scholar 

  • Philpott AB, Schultz R (2006) Unit commitment in electricity pool markets. Math Program 108: 313–337

    Article  MATH  MathSciNet  Google Scholar 

  • PowerWorld Simulator, PowerWorld Corporation, October 2005

  • Schultz R (2003) Stochastic programming with integer variables. Math Program 97: 285–309

    MATH  MathSciNet  Google Scholar 

  • Schultz R, Neise F (2007) Algorithms for mean-risk stochastic integer programs in energy. Rev Investig Oper 28: 4–16

    MathSciNet  Google Scholar 

  • Schultz R, Tiedemann S (2003) Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM J Optim 14: 115–138

    Article  MATH  MathSciNet  Google Scholar 

  • Schultz R, Tiedemann S (2006) Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math Program 105: 365–386

    Article  MATH  MathSciNet  Google Scholar 

  • Sheble GB, Fahd GN (1996) Unit commitment literature synopsis. IEEE Trans Power Syst 11: 1497–1508

    Article  Google Scholar 

  • Takriti S, Birge JR, Long E (1996) A stochastic model for the unit commitment problem. IEEE Trans Power Syst 11: 1497–1508

    Article  Google Scholar 

  • Takriti S, Krasenbrink B, Wu LS-Y (2000) Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem. Oper Res 48: 268–280

    Article  Google Scholar 

  • Wallace SW, Fleten S-E (2003) Stochastic programming models in energy. In: Ruszczyński A, Shapiro A(eds) Handbooks in operations research and management science. Stochastic programming, vol 10. Elsevier, Amsterdam, pp 637–688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, S., Schultz, R. Risk neutral and risk averse power optimization in electricity networks with dispersed generation. Math Meth Oper Res 69, 353–367 (2009). https://doi.org/10.1007/s00186-008-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-008-0264-3

Keywords

Navigation