Abstract
Multivalued logics have a long tradition in the philosophy and logic literature that originates from the work by Łukaszewicz in the 1920s. More recently, many AI researchers have been interested in this topic for both semantic and computational reasons. Multivalued logics have indeed been frequently used both for their semantic properties and as tools for designing tractable reasoning systems. We focus here on the computational aspects of multivalued logics. The main result of this paper is a detailed picture of the impact that the semantic definition, the synthactic form and the assumptions on the relative sizes of the inputs have on the complexity of entailment checking. In particular we show new polynomial cases and generalize polynomial cases already known in the literature for various popular multivalued logics. Such polynomial cases are obtained by means of two simple algorithms, sharing a common method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Anderson and N. Belnap,Entailment: The Logic of Relevance and Necessity (Princeton University Press, Princeton, NJ, 1975).
N. Belnap, A useful four-valued logic, in:Modern Uses of Many-Valued Logics, eds. G. Eppstein and J. Dunn (Reidel, Dordrecht, Netherlands, 1977) pp. 8–37.
R. Boppana and M. Sipser, The complexity of finite functions, in:Handbook of Theoretical Computer Science, ed. J. van Leeuwen. Vol. A, Chapter 14 (Elsevier Science Publishers B.V., North-Holland, 1990).
M. Cadoli and M. Schaerf, Approximate inference in default reasoning and circumscription, in:Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI-92) (August 1992) pp. 319–323. Full version appears inFundamenta Informaticae 23 (1995) 123–143.
M. Cadoli and M. Schaerf, Approximate reasoning and non-omniscient agents, in:Proceedings of the Fourth Conference on Theoretical Aspects of Reasoning about Knowledge (TARK-92) (1992) pp. 169–183. Full version appears inArtificial Intelligence Journal 74 (1995) 249–310.
M. Cadoli and M. Schaerf, Approximation in concept description languages, in:Proceedings of the Third International Conference on the Principles of Knowledge Representation and Reasoning (KR-92), eds. B. Nebel, C. Rich and W. Swartout (October 1992) pp. 330–341.
S.A. Cook, The complexity of theorem-proving procedures, in:Proceedings of the 3rd ACM Symposium on Theory Of Computing (STOC-71) (1971) pp. 151–158.
M. Dalal, Efficient propositional constraint propagation, in:Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92) (1992) pp. 409–414.
W.P. Dowling and J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae,Journal of Logic Programming 1 (1984) 267–284.
R. Fagin, J.Y. Halpern and M.Y. Vardi, A nonstandard approach to the logical omniscience problem, in:Proceedings of the Third Conference on Theoretical Aspects of Reasoning about Knowledge (TARK-90) (1990) pp. 41–55.
M. Fitting, A Kripke-Kleene semantics for logic programs,Journal of Logic Programming 2 (1985) 295–312.
A.M. Frisch, Using model theory to specify AI programs, in:Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85) (1985) pp. 148–154.
A.M. Frisch, Inference without chaining, in:Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87) (1987) pp. 515–519.
M.R. Garey and D.S. Johnson,Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, CA, 1979).
M.L. Ginsberg, Multivalued logics: A uniform approach to reasoning in artificial intelligence,Computational Intelligence 4 (1988) 265–316.
J. Hintikka, Impossible possible worlds vindicated,Journal of Philosophical Logic 4 (1975) 475–484.
E. Horowitz and S. Sahni,Fundamentals of Data Strctures (Pitman, London, 1976).
M. Kifer and E.L. Lozinskii, A logic for reasoning with inconsistency,Journal of Automated Reasoning 9(2) (November 1992) 179–215.
G. Lakemeyer, Tractable meta-reasoning in propositional logics of belief, in:Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87) (1987) pp. 402–408.
H.J. Levesque, A logic of implicit and explicit belief, in:Proceedings of the Fourth National Conference on Artificial Intelligence (AAAI-84) (1984) pp. 198–202.
H.J. Levesque, Logic and the complexity of reasoning,Journal of Philosophical Logic 17 (1988) 355–389.
H.J. Levesque, A knowledge-level account of abduction, in:Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89) (1989) pp. 1061–1067.
P.F. Patel-Schneider, A four-valued semantics for terminological logic,Artificial Intelligence Journal 38 (1989) 319–351.
P.F. Patel-Schneider, A decidable first-order logic for knowledge representation,Journal of Automated Reasoning 6 (1990) 361–388.
T. Przymusinski, Three-valued formalizations of non-monotonic reasoning and logic programming, in:Proceedings of the First International Conference on the Principles of Knowledge Representation and Reasoning (KR-89) (1989) pp. 341–348.
A. van Gelder, K.A. Ross and J.S. Schlipf, The well-founded semantics for general logic programs,Journal of the ACM 38 (1991) 620–650.
M.Y. Vardi, The complexity of relational query languages, in:Proceedings of the 14th ACM Symposyum on Theory Of Computing (STOC-82) (1982) pp. 137–146.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cadoli, M., Schaerf, M. On the complexity of entailment in propositional multivalued logics. Ann Math Artif Intell 18, 29–50 (1996). https://doi.org/10.1007/BF02136173
Issue Date:
DOI: https://doi.org/10.1007/BF02136173