Skip to main content
Log in

Weaving patterns of lines and line segments in space

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Aweaving W is a simple arrangement of lines (or line segments) in the plane together with a binary relation specifying which line is “above” the other. A system of lines (or line segments) in 3-space is called arealization ofW, if its projection into the plane isW and the “above-below” relations between the lines respect the specifications. Two weavings are equivalent if the underlying arrangements of lines are combinatorially equivalent and the “above-below” relations are the same. An equivalence class of weavings is said to be aweaving pattern. A weaving pattern isrealizable if at least one element of the equivalence class has a three-dimensional realization. A weaving (pattern)W is calledperfect if, along each line (line segment) ofW, the lines intersecting it are alternately “above” and “below.” We prove that (i) a perfect weaving pattern ofn lines is realizable if and only ifn ≤ 3, (ii) a perfect m byn weaving pattern of line segments (in a grid-like fashion) is realizable if and only if min(m, n) ≤ 3, (iii) ifn is sufficiently large, then almost all weaving patterns ofn lines are nonrealizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, Lines in space—combinatorics, algorithms and applications,Proc. 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 382–393.

  2. B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink, Counting and cutting cycles of lines and rods in space,Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, 1990, pp. 242–261.

  3. H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

    Google Scholar 

  4. B. Grünbaum,Arrangements and Spreads, Reg. Conf. Series in Math., AMS, Providence, RI, 1972.

    Google Scholar 

  5. M. McKenna and J. O'Rourke, Arrangements of lines in 3-space: a data structure with applications,Proc. 4th Annual ACM Symposium on Computational Geometry, 1988, pp. 371–380.

  6. J. Milnor, On the Betti numbers of real varieties,Proc. Amer. Math. Soc. 15 (1964), 275–280.

    Google Scholar 

  7. R. Penne, On line diagrams, Manuscript (1989).

  8. R. Penne, Algorithms for line diagrams, Manuscript (1989).

  9. R. Thorn, Sur l'homologie des varietes algebriques reelles, inDifferential and Combinatorial Topology (ed. S. S. Cairns), Princeton University Press, Princeton, NJ, 1965.

    Google Scholar 

  10. O. Ya. Viron, Topological problems concerning lines and points of three-dimensional space,Soviet Math. Dokl. 32 (1985), 528–531.

    Google Scholar 

  11. H. E. Warren, Lower bounds for approximation by linear manifolds,Trans. Amer. Math. Soc. 133 (1968), 167–178.

    Google Scholar 

  12. W. Whiteley, Rigidity and polarity II: weaving lines and tensegrity frameworks,Geom. Dedicata 30 (1989), 255–279.

    Google Scholar 

  13. W. Whiteley, Weaving, sections and projections of spherical polyhedra,Discrete Appl. Math., (1990), to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Takao Asano.

Jànos Pach has been supported in part by Hungarian NFSR Grant 1812, NSF Grant CCR-8901484, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), a National Science Foundation Science and Technology Center, under NSF Grant STC88-09648. Richard Pollack has been supported in part by NSA Grant MDA904-89-H-2030, NSF Grants DMS-85-01947 and CCR-8901484, and DIMACS. Emo Welzl has been supported in part by the ESPRIT II Basic Research Actions Program of the EC under Contract No. 3075 (project ALCOM) and DIMACS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pach, J., Pollack, R. & Welzl, E. Weaving patterns of lines and line segments in space. Algorithmica 9, 561–571 (1993). https://doi.org/10.1007/BF01190155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190155

Key words

Navigation