Abstract
For the online hierarchical scheduling problem on two parallel machines, the objective is to maximize the minimum machine load. When the processing times are bounded by an interval \([1,\alpha ]\), Luo and Xu [8] designed an optimal algorithm with a competitive ratio of \(1+\alpha \) based on the threshold method. In this paper, we propose a simpler optimal online algorithm based on modified list scheduling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Q., Cheng, T.C.E., Wan, G., Li, Y.: Several semi-online scheduling problems on two identical machines with combined information. Theor. Comput. Sci. 457, 35–44 (2012)
Cao, Q., Liu, Z., Cheng, T.C.E.: Semi-online scheduling with known partial information about job sizes on two identical machines. Theor. Comput. Sci. 412, 3731–3737 (2011)
Chassid, O., Epstein, L.: The hierarchical model for load balancing on two machines. J. Comb. Optim. 15(4), 305–314 (2008)
Chen, X., Ding, N., Dosa, G., Han, X., Jiang, H.: Online hierarchical scheduling on two machines with known total size of low-hierarchy jobs. Int. J. Comput. Math. 92(5–6), 873–881 (2015)
Epstein, L., Levin, A., Stee, R.: Max-min online allocations with a reordering buffer. SIAM J. Disc. Math. 25(3–4), 1230–1250 (2011)
Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two identical machines under a grade of service. J. Zhejiang Univ. Sci. A. 7, 309–314 (2006)
Liu, M., Chu, C., Xu, Y., Zheng, F.: Semi-online scheduling on 2 machines under a grade of service provision with bounded processing times. J. Comb. Optim. 21, 138–149 (2011)
Luo, T., Xu, Y.: Semi-online hierarchical load balancing problem with bounded processing times. Theor. Comput. Sci. 607, 75–82 (2015)
Park, J., Chang, S., Lee, K.: Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)
Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with discrete processing times. In: Li, L., Lu, P., He, K. (eds.) NCTCS 2018. CCIS, vol. 882, pp. 1–7. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2712-4_1
Wu, Y., Cheng, T.C.E., Ji, M.: Optimal algorithms for semi-online machine covering on two hierarchical machines. Theor. Comput. Sci. 531(6), 37–46 (2014)
Wu, Y., Ji, M., Yang, Q.: Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision. Int. J. Prod. Econ. 135(1), 367–371 (2012)
Xiao, M., Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with known total size of low-hierarchy jobs. In: Sun, X., He, K., Chen, X. (eds.) NCTCS 2019. CCIS, vol. 1069, pp. 95–108. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0105-0_7
Zhang, A., Jiang, Y., Fan, L., Hu, J.: Optimal online algorithms on two hierarchical machines with tightly-grouped processing times. J. Comb. Optim. 29(4), 781–795 (2015)
Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2_4
Chen, X., Kovalev, S., Liu, Y.Q., Sterna, M., Chalamon, I., Błażewicz, J.: Semi-online scheduling on two identical machines with a common due date to maximize total early work. Disc. Appl. Math. 290, 71–78 (2021)
Chen, X., Sterna, M., Han, X., Błażewicz, J.: Scheduling on parallel identical machines with late work criterion: offline and online cases. J. Schedul. 19(6), 729–736 (2016)
Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two hierarchical machines with partial information of processing time. In: Wu, W., Du, H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93176-6_13
Hwang, H.C., Chang, S.Y., Lee, K.: Parallel machine scheduling under a grade of service provision. Comput. Oper. Res. 31(12), 2055–2061 (2004)
Li, W., Li, J., Zhang, T.: Two approximation schemes for scheduling on parallel machines under a grade of service provision. Asia-Pac. J. Oper. Res. 29(5), Article 1250029 (2012)
Ou, J., Leung, J.Y.T., Li, C.: Scheduling parallel machines with inclusive processing set restrictions. Naval Res. Logist. 55(4), 328–338 (2008)
Li, J., Li, W., Li, J.: Polynomial approximation schemes for the max-min allocation problem under a grade of service provision. Disc. Math. Algor. Appl. 1(3), 355–368 (2009)
Zhao, S., Xiao, M., Li, W.: Semi-online algorithms for hierarchical scheduling on three machines with reassignment. Comput. Eng. Sci. 44(6), 1126–1132 (2022)
He, Y.: Semi-on-line scheduling problems for maximizing the minimum machine completion time. Acta Mathematicae Applicatae Sinica 17, 107–113 (2001)
Xiao, M., Bai, X., Li, W.: Online early work maximization problem on two hierarchical machines with buffer or rearrangements. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol. 13513. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16081-3_5
Acknowledgement
The work is supported in part by the National Natural Science Foundation of China [No. 12071417].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xiao, M., Li, W. (2022). A Modified List Scheduling Algorithm for the Online Hierarchical Load Balancing Problem with Bounded Processing Times. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_15
Download citation
DOI: https://doi.org/10.1007/978-981-19-8152-4_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8151-7
Online ISBN: 978-981-19-8152-4
eBook Packages: Computer ScienceComputer Science (R0)