Skip to main content

A Modified List Scheduling Algorithm for the Online Hierarchical Load Balancing Problem with Bounded Processing Times

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1693))

Included in the following conference series:

  • 316 Accesses

Abstract

For the online hierarchical scheduling problem on two parallel machines, the objective is to maximize the minimum machine load. When the processing times are bounded by an interval \([1,\alpha ]\), Luo and Xu [8] designed an optimal algorithm with a competitive ratio of \(1+\alpha \) based on the threshold method. In this paper, we propose a simpler optimal online algorithm based on modified list scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Q., Cheng, T.C.E., Wan, G., Li, Y.: Several semi-online scheduling problems on two identical machines with combined information. Theor. Comput. Sci. 457, 35–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, Q., Liu, Z., Cheng, T.C.E.: Semi-online scheduling with known partial information about job sizes on two identical machines. Theor. Comput. Sci. 412, 3731–3737 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chassid, O., Epstein, L.: The hierarchical model for load balancing on two machines. J. Comb. Optim. 15(4), 305–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Ding, N., Dosa, G., Han, X., Jiang, H.: Online hierarchical scheduling on two machines with known total size of low-hierarchy jobs. Int. J. Comput. Math. 92(5–6), 873–881 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Epstein, L., Levin, A., Stee, R.: Max-min online allocations with a reordering buffer. SIAM J. Disc. Math. 25(3–4), 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two identical machines under a grade of service. J. Zhejiang Univ. Sci. A. 7, 309–314 (2006)

    Article  MATH  Google Scholar 

  7. Liu, M., Chu, C., Xu, Y., Zheng, F.: Semi-online scheduling on 2 machines under a grade of service provision with bounded processing times. J. Comb. Optim. 21, 138–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo, T., Xu, Y.: Semi-online hierarchical load balancing problem with bounded processing times. Theor. Comput. Sci. 607, 75–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Park, J., Chang, S., Lee, K.: Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with discrete processing times. In: Li, L., Lu, P., He, K. (eds.) NCTCS 2018. CCIS, vol. 882, pp. 1–7. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2712-4_1

    Chapter  Google Scholar 

  11. Wu, Y., Cheng, T.C.E., Ji, M.: Optimal algorithms for semi-online machine covering on two hierarchical machines. Theor. Comput. Sci. 531(6), 37–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, Y., Ji, M., Yang, Q.: Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision. Int. J. Prod. Econ. 135(1), 367–371 (2012)

    Article  Google Scholar 

  13. Xiao, M., Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with known total size of low-hierarchy jobs. In: Sun, X., He, K., Chen, X. (eds.) NCTCS 2019. CCIS, vol. 1069, pp. 95–108. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0105-0_7

    Chapter  Google Scholar 

  14. Zhang, A., Jiang, Y., Fan, L., Hu, J.: Optimal online algorithms on two hierarchical machines with tightly-grouped processing times. J. Comb. Optim. 29(4), 781–795 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2_4

    Chapter  Google Scholar 

  16. Chen, X., Kovalev, S., Liu, Y.Q., Sterna, M., Chalamon, I., Błażewicz, J.: Semi-online scheduling on two identical machines with a common due date to maximize total early work. Disc. Appl. Math. 290, 71–78 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Sterna, M., Han, X., Błażewicz, J.: Scheduling on parallel identical machines with late work criterion: offline and online cases. J. Schedul. 19(6), 729–736 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two hierarchical machines with partial information of processing time. In: Wu, W., Du, H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93176-6_13

    Chapter  Google Scholar 

  19. Hwang, H.C., Chang, S.Y., Lee, K.: Parallel machine scheduling under a grade of service provision. Comput. Oper. Res. 31(12), 2055–2061 (2004)

    Article  MATH  Google Scholar 

  20. Li, W., Li, J., Zhang, T.: Two approximation schemes for scheduling on parallel machines under a grade of service provision. Asia-Pac. J. Oper. Res. 29(5), Article 1250029 (2012)

    Google Scholar 

  21. Ou, J., Leung, J.Y.T., Li, C.: Scheduling parallel machines with inclusive processing set restrictions. Naval Res. Logist. 55(4), 328–338 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J., Li, W., Li, J.: Polynomial approximation schemes for the max-min allocation problem under a grade of service provision. Disc. Math. Algor. Appl. 1(3), 355–368 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Zhao, S., Xiao, M., Li, W.: Semi-online algorithms for hierarchical scheduling on three machines with reassignment. Comput. Eng. Sci. 44(6), 1126–1132 (2022)

    Google Scholar 

  24. He, Y.: Semi-on-line scheduling problems for maximizing the minimum machine completion time. Acta Mathematicae Applicatae Sinica 17, 107–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, M., Bai, X., Li, W.: Online early work maximization problem on two hierarchical machines with buffer or rearrangements. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol. 13513. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16081-3_5

Download references

Acknowledgement

The work is supported in part by the National Natural Science Foundation of China [No. 12071417].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M., Li, W. (2022). A Modified List Scheduling Algorithm for the Online Hierarchical Load Balancing Problem with Bounded Processing Times. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics