Skip to main content

Deterministic Sparse Suffix Sorting on Rewritable Texts

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

Given a rewritable text T of length n on an alphabet of size \(\sigma \), we propose an online algorithm computing the sparse suffix array and the sparse longest common prefix array of T in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( c \sqrt{\lg n} \right. + \left. m \lg m \lg n \lg ^* n\right) \) time by using the text space and \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( m\right) \) additional working space, where \(m \le n\) is the number of suffixes to be sorted (provided online and arbitrarily), and \(c \ge m\) is the number of characters that must be compared for distinguishing the designated suffixes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The original version prefers the left meta-block, but we change it for a more stable behavior.

  2. 2.

    The check is relaxed since nodes with different surnames cannot have the same name.

References

  1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: SODA, pp. 819–828 (2000)

    Google Scholar 

  2. Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse suffix tree construction in small space. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 148–159. Springer, Heidelberg (2013)

    Google Scholar 

  3. Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts. arXiv:1509.07417 (2015)

  7. Franceschini, G., Grossi, R.: No sorting? better searching! In: Foundations of Computer Science, pp. 491–498, October 2004

    Google Scholar 

  8. I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS, pp. 386–396 (2014)

    Google Scholar 

  9. Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discrete Algorithms 1(5–6), 387–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Foundations of Computer Science, FOCS, pp. 596–604 (1999)

    Google Scholar 

  12. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: SODA, pp. 213–222. SIAM (1994)

    Google Scholar 

  13. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ factorization, and LCE queries in compressed space. arXiv:1504.06954 (2015)

  14. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)

    Article  MathSciNet  Google Scholar 

  15. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Köppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, J., I., T., Köppl, D. (2016). Deterministic Sparse Suffix Sorting on Rewritable Texts. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics