Abstract
Strings u, v are said to be Abelian equivalent if u is a permutation of the characters appearing in v. A string w is said to have a full Abelian period p if \(w = w_1 \cdots w_k\), where all \(w_i\)’s are of length p each and are all Abelian equivalent. This paper studies reverse-engineering problems on full Abelian periods. Given a positive integer n and a set D of divisors of n, we show how to compute in O(n) time the lexicographically smallest string of length n which has all elements of D as its full Abelian periods and has the minimum number of full Abelian periods not in D. Moreover, we give an algorithm to enumerate all such strings in amortized constant time per output after O(n)-time preprocessing. Also, we show how to enumerate the strings which have all elements of D as its full Abelian periods in amortized constant time per output after O(n)-time preprocessing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, Heidelberg (1976)
Blanchet-Sadri, F., Simmons, S., Tebbe, A., Veprauskas, A.: Abelian periods, partial words, and an extension of a theorem of Fine and Wilf. RAIRO - Theor. Inf. Appl. 47(3), 215–234 (2013)
Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: a novel algorithm. J. Discrete Algorithms 28, 9–22 (2014)
Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for Abelian periods. Bull. EATCS 89, 167–170 (2006)
Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J., Radoszewski, J., Rytter, W., Tyczynski, W., Walen, T.: A note on efficient computation of all Abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)
Fici, G., Lecroq, T., Lefebvre, A., Élise Prieur-Gaston, Smyth, W.F.: Quasi-linear time computation of the Abelian periods of a word. In: PSC 2012, pp. 103–110 (2012)
Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E.: Computing Abelian periods in words. In: PSC 2011, pp. 184–196 (2011)
Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)
Gawrychowski, P., Jeż, A., Jeż, Ł.: Validating the Knuth-Morris-Pratt failure function, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)
Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)
Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for Abelian periods in words and greatest common divisor queries. In: STACS 2013, pp. 245–256 (2013)
Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)
Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library, Cambridge (1997)
Nakashima, Y., Okabe, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from Lyndon factorization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 565–576. Springer, Heidelberg (2014)
Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discrete Algorithms 32, 14–23 (2015)
Takaoka, T.: An \(O\)(1) time algorithm for generating multiset permutations. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 237–246. Springer, Heidelberg (1999)
Williams, A.: Loopless generation of multiset permutations using a constant number of variables by prefix shifts. In: SODA 2009, pp. 987–996 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nishida, M., I., T., Inenaga, S., Bannai, H., Takeda, M. (2015). Inferring Strings from Full Abelian Periods. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_64
Download citation
DOI: https://doi.org/10.1007/978-3-662-48971-0_64
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48970-3
Online ISBN: 978-3-662-48971-0
eBook Packages: Computer ScienceComputer Science (R0)