Skip to main content

Exact Minkowski Sums of Polygons With Holes

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

We present an efficient algorithm that computes the Minkowski sum of two polygons, which may have holes. The new algorithm is based on the convolution approach. Its efficiency stems in part from a property for Minkowski sums of polygons with holes, which in fact holds in any dimension: Given two polygons with holes, for each input polygon we can fill up the holes that are relatively small compared to the other polygon. Specifically, we can always fill up all the holes of at least one polygon, transforming it into a simple polygon, and still obtain exactly the same Minkowski sum. Obliterating holes in the input summands speeds up the computation of Minkowski sums.

We introduce a robust implementation of the new algorithm, which follows the Exact Geometric Computation paradigm and thus guarantees exact results. We also present an empirical comparison of the performance of Minkowski sum construction of various input examples, where we show that the implementation of the new algorithm exhibits better performance than several other implementations in many cases. The software is available as part of the 2D Minkowski Sums package of Cgal (Computational Geometry Algorithms Library), starting from ReleaseĀ 4.7. Additional information and supplementary material is available at our project page http://acg.cs.tau.ac.il/projects/rc .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl.Ā 21, 39ā€“61 (2002)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Behar, E., Lien, J.-M.: Fast and robust 2D Minkowski sum using reduced convolution. In: Proc. IEEE Conf. on Intelligent Robots and Systems (2011)

    Google ScholarĀ 

  3. Bern, M.: Triangulations and mesh generation. In: Goodman, J.E., Oā€™Rourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 25, 2nd edn., pp. 529ā€“582. Chapman & Hall/CRC, Boca Raton (2004)

    Google ScholarĀ 

  4. Couto, M.C., de Rezende, P.J., de Souza, C.C.: Instances for the Art Gallery Problem (2009), http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery

  5. Elber, G., Kim, M.-S.: Offsets, sweeps, and Minkowski sums. Comput. Aided DesignĀ 31(3), 163 (1999)

    ArticleĀ  Google ScholarĀ 

  6. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. In: Proc. 8th Workshop Alg. Eng. Experiments, pp. 3ā€“15 (2006)

    Google ScholarĀ 

  7. Fogel, E., Halperin, D.: Polyhedral assembly partitioning with infinite translations or the importance of being exact. IEEE Trans. on Automation Sci. and Eng.Ā 10, 227ā€“241 (2013)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  8. Fogel, E., Halperin, D., Wein, R.: Cgal Arrangements and Their Applications, A Step by Step Guide. Springer, Heidelberg (2012)

    BookĀ  MATHĀ  Google ScholarĀ 

  9. Ghosh, P.K.: A unified computational framework for Minkowski operations. Comput. & GraphicsĀ 17(4), 357ā€“378 (1993)

    ArticleĀ  Google ScholarĀ 

  10. Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proc. 24th Annu. IEEE Symp. Found. Comput. Sci., pp. 100ā€“111 (1983)

    Google ScholarĀ 

  11. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. AlgorithmicaĀ 55(2), 329ā€“345 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. Halperin, D.: Arrangements. In: Goodman, J.E., Oā€™Rourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 24, 2nd edn., pp. 529ā€“562. Chapman & Hall/CRC, Boca Raton (2004)

    Google ScholarĀ 

  13. Hartquist, E.E., Menon, J., Suresh, K., Voelcker, H.B., Zagajac, J.: A computing strategy for applications involving offsets, sweeps, and Minkowski operations. Comput. Aided DesignĀ 31, 175ā€“183 (1999)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  14. Kaul, A., Oā€™Connor, M., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proc. 3rd Canadian Conf. on Comput. Geom., pp. 74ā€“77 (1991)

    Google ScholarĀ 

  15. Kavraki, L.E.: Computation of configuration-space obstacles using the fast fourier transform. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 255ā€“261 (1993)

    Google ScholarĀ 

  16. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    BookĀ  MATHĀ  Google ScholarĀ 

  17. Li, W., McMains, S.: A GPU-based voxelization approach to 3D Minkowski sum computation. In: Proc. 2010 ACM Symp. Solid Phys. Model., pp. 31ā€“40. ACM Press (2010)

    Google ScholarĀ 

  18. Lien, J.-M.: A simple method for computing minkowski sum boundary in 3D using collision detection. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol.Ā 57, pp. 401ā€“415. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  19. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., Oā€™Rourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 35, 2nd edn., pp. 787ā€“807. Chapman & Hall/CRC, Boca Raton (2004)

    Google ScholarĀ 

  20. Lozano-PĆ©rez, T.: Spatial planning: A configuration space approach. IEEE Trans. on Comput.Ā C-32, 108ā€“120 (1983)

    Google ScholarĀ 

  21. Milenkovic, V., Sacks, E.: A monotonic convolution for Minkowski sums. Int. J. of Comput. Geom. Appl.Ā 17(4), 383ā€“396 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Ramkumar, G.: Tracings and Their Convolutions: Theory and Application. Phd thesis, Stanford, California (1998)

    Google ScholarĀ 

  23. The Cgal Project. Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015), http://doc.cgal.org/latest/Manual/index.html

  24. Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral models. Graphical ModelsĀ 68(4), 343ā€“355 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  25. Wein, R.: Exact and efficient construction of planar Minkowski sums using the convolution method. In: Proc. 14th Annu. Eur. Symp. Alg., pp. 829ā€“840 (2006)

    Google ScholarĀ 

  26. Wein, R.: 2D Minkowski sums. In: Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgMinkowskiSum2Summary .

  27. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgArrangement2Summary .

  28. Yvinec, M.: 2D triangulations. In: Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2Summary .

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Baram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baram, A., Fogel, E., Halperin, D., Hemmer, M., Morr, S. (2015). Exact Minkowski Sums of Polygons With Holes. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics