Abstract
We present an efficient algorithm that computes the Minkowski sum of two polygons, which may have holes. The new algorithm is based on the convolution approach. Its efficiency stems in part from a property for Minkowski sums of polygons with holes, which in fact holds in any dimension: Given two polygons with holes, for each input polygon we can fill up the holes that are relatively small compared to the other polygon. Specifically, we can always fill up all the holes of at least one polygon, transforming it into a simple polygon, and still obtain exactly the same Minkowski sum. Obliterating holes in the input summands speeds up the computation of Minkowski sums.
We introduce a robust implementation of the new algorithm, which follows the Exact Geometric Computation paradigm and thus guarantees exact results. We also present an empirical comparison of the performance of Minkowski sum construction of various input examples, where we show that the implementation of the new algorithm exhibits better performance than several other implementations in many cases. The software is available as part of the 2D Minkowski Sums package of Cgal (Computational Geometry Algorithms Library), starting from ReleaseĀ 4.7. Additional information and supplementary material is available at our project page http://acg.cs.tau.ac.il/projects/rc .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl.Ā 21, 39ā61 (2002)
Behar, E., Lien, J.-M.: Fast and robust 2D Minkowski sum using reduced convolution. In: Proc. IEEE Conf. on Intelligent Robots and Systems (2011)
Bern, M.: Triangulations and mesh generation. In: Goodman, J.E., OāRourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 25, 2nd edn., pp. 529ā582. Chapman & Hall/CRC, Boca Raton (2004)
Couto, M.C., de Rezende, P.J., de Souza, C.C.: Instances for the Art Gallery Problem (2009), http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
Elber, G., Kim, M.-S.: Offsets, sweeps, and Minkowski sums. Comput. Aided DesignĀ 31(3), 163 (1999)
Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. In: Proc. 8th Workshop Alg. Eng. Experiments, pp. 3ā15 (2006)
Fogel, E., Halperin, D.: Polyhedral assembly partitioning with infinite translations or the importance of being exact. IEEE Trans. on Automation Sci. and Eng.Ā 10, 227ā241 (2013)
Fogel, E., Halperin, D., Wein, R.: Cgal Arrangements and Their Applications, A Step by Step Guide. Springer, Heidelberg (2012)
Ghosh, P.K.: A unified computational framework for Minkowski operations. Comput. & GraphicsĀ 17(4), 357ā378 (1993)
Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proc. 24th Annu. IEEE Symp. Found. Comput. Sci., pp. 100ā111 (1983)
Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. AlgorithmicaĀ 55(2), 329ā345 (2009)
Halperin, D.: Arrangements. In: Goodman, J.E., OāRourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 24, 2nd edn., pp. 529ā562. Chapman & Hall/CRC, Boca Raton (2004)
Hartquist, E.E., Menon, J., Suresh, K., Voelcker, H.B., Zagajac, J.: A computing strategy for applications involving offsets, sweeps, and Minkowski operations. Comput. Aided DesignĀ 31, 175ā183 (1999)
Kaul, A., OāConnor, M., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proc. 3rd Canadian Conf. on Comput. Geom., pp. 74ā77 (1991)
Kavraki, L.E.: Computation of configuration-space obstacles using the fast fourier transform. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 255ā261 (1993)
Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)
Li, W., McMains, S.: A GPU-based voxelization approach to 3D Minkowski sum computation. In: Proc. 2010 ACM Symp. Solid Phys. Model., pp. 31ā40. ACM Press (2010)
Lien, J.-M.: A simple method for computing minkowski sum boundary in 3D using collision detection. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol.Ā 57, pp. 401ā415. Springer, Heidelberg (2009)
Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., OāRourke, J. (eds.) Handb. Disc. Comput. Geom., ch. 35, 2nd edn., pp. 787ā807. Chapman & Hall/CRC, Boca Raton (2004)
Lozano-PĆ©rez, T.: Spatial planning: A configuration space approach. IEEE Trans. on Comput.Ā C-32, 108ā120 (1983)
Milenkovic, V., Sacks, E.: A monotonic convolution for Minkowski sums. Int. J. of Comput. Geom. Appl.Ā 17(4), 383ā396 (2007)
Ramkumar, G.: Tracings and Their Convolutions: Theory and Application. Phd thesis, Stanford, California (1998)
The Cgal Project. Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015), http://doc.cgal.org/latest/Manual/index.html
Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral models. Graphical ModelsĀ 68(4), 343ā355 (2006)
Wein, R.: Exact and efficient construction of planar Minkowski sums using the convolution method. In: Proc. 14th Annu. Eur. Symp. Alg., pp. 829ā840 (2006)
Wein, R.: 2D Minkowski sums. In: Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgMinkowskiSum2Summary .
Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgArrangement2Summary .
Yvinec, M.: 2D triangulations. In: Cgal User and Reference Manual. Cgal Editorial Board, 4.6 edn. (2015). http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2Summary .
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baram, A., Fogel, E., Halperin, D., Hemmer, M., Morr, S. (2015). Exact Minkowski Sums of Polygons With Holes. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-48350-3_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48349-7
Online ISBN: 978-3-662-48350-3
eBook Packages: Computer ScienceComputer Science (R0)