Abstract
Wikipedia’s infoboxes contain rich structured information of various entities, which have been explored by the DBpedia project to generate large scale Linked Data sets. Among all the infobox attributes, those attributes having hyperlinks in its values identify semantic relations between entities, which are important for creating RDF links between DBpedia’s instances. However, quite a few hyperlinks have not been anotated by editors in infoboxes, which causes lots of relations between entities being missing in Wikipedia. In this paper, we propose an approach for automatically discovering the missing entity links in Wikipedia’s infoboxes, so that the missing semantic relations between entities can be established. Our approach first identifies entity mentions in the given infoboxes, and then computes several features to estimate the possibilities that a given attribute value might link to a candidate entity. A learning model is used to obtain the weights of different features, and predict the destination entity for each attribute value. We evaluated our approach on the English Wikipedia data, the experimental results show that our approach can effectively find the missing relations between entities, and it significantly outperforms the baseline methods in terms of both precision and recall.
Chapter PDF
Similar content being viewed by others
Keywords
References
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)
Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 2, pp. 1962–1963 (2007)
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)
Cudre-Mauroux, P., Haghani, P., Jost, M., Aberer, K., De Meer, H.: idMesh: graph-based disambiguation of linked data. In: Proceedings of the 18th International Conference on World Wide Web, pp. 591–600 (2009)
Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774 (2011)
Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation of wikipedia entities in web text. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 457–466 (2009)
Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)
Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 233–242 (2007)
Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: Proceedings of the First AAAI Workshop on Wikipedia and Artificial Intelligence (2008)
Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)
Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Handling instance coreferencing in the knofuss architecture. In: 1st International Workshop on Identity and Reference on the Semantic Web (2008)
Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: Proceedings of the 1st Linked Data on the Web Workshop
Shen, W., Wang, J., Luo, P., Wang, M.: LIEGE: link entities in web lists with knowledge base. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1424–1432 (2012)
Shen, W., Wang, J., Luo, P., Wang, M.: LINDEN: linking named entities with knowledge base via semantic knowledge. In: Proceedings of the 21st International Conference on World Wide Web, pp. 449–458 (2012)
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)
Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, M. et al. (2013). Discovering Missing Semantic Relations between Entities in Wikipedia. In: Alani, H., et al. The Semantic Web – ISWC 2013. ISWC 2013. Lecture Notes in Computer Science, vol 8218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41335-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-41335-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41334-6
Online ISBN: 978-3-642-41335-3
eBook Packages: Computer ScienceComputer Science (R0)