Skip to main content

On Integrality Ratios for Asymmetric TSP in the Sherali-Adams Hierarchy

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

  • 1733 Accesses

Abstract

We study the ATSP (Asymmetric Traveling Salesman Problem), and our focus is on negative results in the framework of the Sherali-Adams (SA) Lift and Project method.

Our main result pertains to the standard LP (linear programming) relaxation of ATSP, due to Dantzig, Fulkerson, and Johnson. For any fixed integer t ≥ 0 and small ε, 0 < ε ≪ 1, there exists a digraph G on ν = ν(t,ε) = O(t/ε) vertices such that the integrality ratio for level t of the SA system starting with the standard LP on G is \(\ge 1+\frac{1-\epsilon}{2t+3} \approx \frac43, \frac65, \frac87, \dots\). Thus, in terms of the input size, the result holds for any t = 0,1,…,Θ(ν) levels. Our key contribution is to identify a structural property of digraphs that allows us to construct fractional feasible solutions for any level t of the SA system starting from the standard LP. Our hard instances are simple and satisfy the structural property.

There is a further relaxation of the standard LP called the balanced LP, and our methods simplify considerably when the starting LP for the SA system is the balanced LP; in particular, the relevant structural property (of digraphs) simplifies such that it is satisfied by the digraphs given by the well-known construction of Charikar, Goemans and Karloff (CGK). Consequently, the CGK digraphs serve as hard instances, and we obtain an integrality ratio of \(1 +\frac{1-\epsilon}{t+1}\) for any level t of the SA system, where 0 < ε ≪ 1 and the number of vertices is ν(t,ε) = O((t/ε)(t/ε)).

Also, our results for the standard LP extend to the path ATSP (find a min cost Hamiltonian dipath from a given source vertex to a given sink vertex).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without knowing the linear program. Theory of Computing 2(1), 19–51 (2006)

    Article  MathSciNet  Google Scholar 

  2. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log n/log log n)-approximation algorithm for the Asymmetric Traveling Salesman Problem. In: Proc. ACM–SIAM SODA 2010, pp. 379–389. SIAM (2010)

    Google Scholar 

  3. Au, Y.H., Tunçel, L.: Complexity analyses of Bienstock-Zuckerberg and Lasserre relaxations on the matching and stable set polytopes. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 14–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Benabbas, S., Chan, S.O., Georgiou, K., Magen, A.: Tight gaps for vertex cover in the Sherali-Adams SDP hierarchy. In: Proc. FSTTCS 2011. LIPIcs, vol. 13, pp. 41–54 (2011)

    Google Scholar 

  5. Carr, R., Vempala, S.: On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems. Math. Program. 100(3), 569–587 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charikar, M., Goemans, M.X., Karloff, H.J.: On the integrality ratio for the Asymmetric Traveling Salesman Problem. Math. Oper. Res. 31(2), 245–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams relaxations. In: Proc. ACM STOC 2009, New York, NY, USA, pp. 283–292 (2009)

    Google Scholar 

  8. Cheung, K.K.H.: On Lovász–Schrijver lift-and-project procedures on the Dantzig–Fulkerson–Johnson relaxation of the TSP. SIAM Journal on Optimization 16(2), 380–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chlamtáč, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, US (2012)

    Chapter  Google Scholar 

  10. de la Vega, W.F., Kenyon-Mathieu, C.: Linear programming relaxations of maxcut. In: Proc. ACM–SIAM SODA 2007, pp. 53–61. ACM Press (2007)

    Google Scholar 

  11. Elliott-Magwood, P.: The integrality gap of the Asymmetric Travelling Salesman Problem. PhD thesis, Department of Mathematics and Statistics, University of Ottawa (2008)

    Google Scholar 

  12. Lampis, M.: Improved inapproximability for TSP. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 243–253. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM Journal on Optimization 12(3), 756–769 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optim. 1(2), 166–190 (1991)

    Article  MATH  Google Scholar 

  16. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26(1), 101–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Roberti, R., Toth, P.: Models and algorithms for the Asymmetric Traveling Salesman Problem: an experimental comparison. EURO Journal on Transportation and Logistics 1, 113–133 (2012)

    Article  Google Scholar 

  18. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tourlakis, I.: New lower bounds for Approximation Algorithms in the Lovasz-Schrijver Hierarchy. PhD thesis, Department of Computer Science, Princeton University (2006)

    Google Scholar 

  20. Watson, T.: Lift-and-project integrality gaps for the Traveling Salesperson Problem. Electronic Colloquium on Computational Complexity (ECCC) 18, 97 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheriyan, J., Gao, Z., Georgiou, K., Singla, S. (2013). On Integrality Ratios for Asymmetric TSP in the Sherali-Adams Hierarchy. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics