Skip to main content

A Polynomial Time Approximation Scheme for the Closest Shared Center Problem

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

  • 1891 Accesses

Abstract

Mutation region detection is the first step of searching for a disease gene and has facilitated the identification of several hundred human genes that can harbor mutations leading to a disease phenotype. Recently, the closest shared center problem (CSC) was proposed as a core to solve the mutation region detection problem when the pedigree is not given [9]. A ratio-2 approximation algorithm was proposed for the closest shared center problem. In this paper, we will design a polynomial time approximation scheme for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abecasis, G., Cherny, S., Cookson, W., Cardon, L.: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101 (2002)

    Article  Google Scholar 

  2. Cai, Z., Sabaa, H., Wang, Y., Goebel, R., Wang, Z., Xu, J., Stothard, P., Lin, G.: Most parsimonious haplotype allele sharing determination. BMC Bioinformatics 10, 115 (2009)

    Article  Google Scholar 

  3. Gillman, D.: A Chernoff bound for randomwalks on expanders. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp. 680–691 (1993)

    Google Scholar 

  4. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L., Kong, A.: Allegro, a new computer program for multipoint linkage analysis. Nature Genetics 25, 12–13 (2000)

    Article  Google Scholar 

  5. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P., Lander, E.S.: Parametric and nonparametric linkage analysis: a unified multipoint approach. American Journal of Human Genetics 58, 1347–1363 (1995)

    Google Scholar 

  7. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. Assoc. Comput. Mach. 49, 157–171 (2002)

    Article  MathSciNet  Google Scholar 

  8. Lin, G., Wang, Z., Wang, L., Lau, Y.-L., Yang, W.: Identification of linked regions using high-density SNP genotype data in linkage analysis. Bioinformatics 24(1), 86–93 (2008)

    Article  Google Scholar 

  9. Ma, W., Yang, Y., Chen, Z., Wang, L.: Mutation region detection for closely related individuals without a known pedigree using high-density genotype data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2), 372–384 (2012)

    Article  Google Scholar 

  10. Cui, W., Wang, L.: Identifying mutation regions for closely related individuals without a known pedigree. BMC Bioinformatics 13, 146 (2012)

    Article  Google Scholar 

  11. Chen, Z.-Z., Ma, W., Wang, L.: The Parameterized Complexity of the Shared Center Problem, Algorithmic (to appear)

    Google Scholar 

  12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Wang, L., Cui, W. (2013). A Polynomial Time Approximation Scheme for the Closest Shared Center Problem. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics