Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7746))

Abstract

X-ray angiography is the most common imaging modality employed in the diagnosis of coronary diseases prior to or during a catheter-based intervention. The analysis of the patient X-Ray sequence can provide useful information about the degree of arterial stenosis, the myocardial perfusion and other clinical parameters. If the sequence has been acquired to evaluate the perfusion grade, the opacity due to the diaphragm could potentially hinder any kind of visual inspection and make more difficult a computer aided measurements. In this paper we propose an accurate and robust method to automatically identify the diaphragm border in each frame. Quantitative evaluation on a set of 11 sequences shows that the proposed algorithm outperforms previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, M.S.: Knowledge-based method for segmentation and analysis of lung boundaries in chest x-ray images. Computerized Medical Imaging and Graphics 22, 463–477 (1998)

    Article  Google Scholar 

  2. Condurache, A., Aach, T., Eck, K., Bredno, J., Stehle, T.: Fast and robust diaphragm detection and tracking in cardiac x-ray projection images. In: SPIE MI, vol. 5747, pp. 1766–1775 (2005)

    Google Scholar 

  3. Condurache, A., Aach, T., Kaiser, A., Radke, P.: User-defined ROI tracking of the myocardial blush grade. In: 7th IEEE SSIAI, Denver, CO, March 28-30, pp. 66–70. IEEE Computer Society (2006)

    Google Scholar 

  4. Funabashi, N., Kobayashi, Y., Perlroth, M., Rubin, G.: Coronary artery: quantitative evaluation of normal diameter determined with electron-beam ct compared with cine coronary angiography initial experience. Radiology 226(1), 263–271 (2003)

    Article  Google Scholar 

  5. Gatta, C., Gomez Valencia, J.D., Ciompi, F., Rodriguez Leor, O., Radeva, P.: Toward Robust Myocardial Blush Grade Estimation in Contrast Angiography. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 249–256. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Gil, D., Rodriguez-Leor, O., Radeva, P., Mauri, J.: Myocardial perfusion characterization from contrast angiography spectral distribution. IEEE TMI 27(5), 641–649 (2008)

    Google Scholar 

  7. Henrikson, J.: Completeness and total boundedness of the hausdorff metric. MIT Undergraduate Journal of Mathematics 1, 69–80 (1999)

    Google Scholar 

  8. Liénard, J., Vaillant, R.: Quantitative Tool for the Assessment of Myocardial Perfusion during X-Ray Angiographic Procedures. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 124–133. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lindeberg, T.: Principle for automatic scale selection. Technical report, RIT (1998)

    Google Scholar 

  10. Thompson, R.: A note on restricted maximum likelihood estimation with an alternative outlier model. Journal of the Royal Statistical Society. Series B 47, 53–55 (1985)

    Google Scholar 

  11. van Ginneken, B., et al.: Automatic segmentation of lung fields in chest radiographs. Medical Physics 27(10) (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petkov, S., Romero, A., Suarez, X.C., Radeva, P., Gatta, C. (2013). Robust and Accurate Diaphragm Border Detection in Cardiac X-Ray Angiographies. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics