Skip to main content

A Machine-Independent Characterization of Timed Languages

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Included in the following conference series:

Abstract

We use a variant of Fraenkel-Mostowski sets (known also as nominal sets) as a framework suitable for stating and proving the following two results on timed automata. The first result is a machine-independent characterization of languages of deterministic timed automata. As a second result we define a class of automata, called by us timed register automata, that extends timed automata and is effectively closed under minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L., Wong-Toi, H.: Minimization of Timed Transition Systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bojańczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. LICS 2011, pp. 355–364 (2011)

    Google Scholar 

  4. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets (submitted, 2012), http://www.mimuw.edu.pl/~sl/PAPERS/lics11full.pdf

  5. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2-3), 291–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)

    Article  MATH  Google Scholar 

  7. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. Journal of Automata, Languages and Combinatorics 5(4), 371–404 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Finkel, O.: Undecidable problems about timed automata. CoRR, abs/0712.1363 (2007)

    Google Scholar 

  9. Francez, N., Kaminski, M.: Finite-memory automata. TCS 134(2), 329–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabbay, M.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic 17(2), 161–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3-5), 341–363 (2002)

    Article  MATH  Google Scholar 

  12. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)

    Google Scholar 

  13. Maler, O., Pnueli, A.: On Recognizable Timed Languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Springintveld, J., Vaandrager, F.W.: Minimizable Timed Automata. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 130–147. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  15. Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process. Lett. 99(6), 222–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems. Formal Methods in System Design 11(2), 113–136 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bojańczyk, M., Lasota, S. (2012). A Machine-Independent Characterization of Timed Languages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics