Abstract
We use a variant of Fraenkel-Mostowski sets (known also as nominal sets) as a framework suitable for stating and proving the following two results on timed automata. The first result is a machine-independent characterization of languages of deterministic timed automata. As a second result we define a class of automata, called by us timed register automata, that extends timed automata and is effectively closed under minimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L., Wong-Toi, H.: Minimization of Timed Transition Systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Bojańczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. LICS 2011, pp. 355–364 (2011)
Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets (submitted, 2012), http://www.mimuw.edu.pl/~sl/PAPERS/lics11full.pdf
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2-3), 291–345 (2004)
Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)
Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. Journal of Automata, Languages and Combinatorics 5(4), 371–404 (2000)
Finkel, O.: Undecidable problems about timed automata. CoRR, abs/0712.1363 (2007)
Francez, N., Kaminski, M.: Finite-memory automata. TCS 134(2), 329–363 (1994)
Gabbay, M.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic 17(2), 161–229 (2011)
Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3-5), 341–363 (2002)
Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
Maler, O., Pnueli, A.: On Recognizable Timed Languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)
Springintveld, J., Vaandrager, F.W.: Minimizable Timed Automata. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 130–147. Springer, Heidelberg (1996)
Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process. Lett. 99(6), 222–226 (2006)
Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems. Formal Methods in System Design 11(2), 113–136 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bojańczyk, M., Lasota, S. (2012). A Machine-Independent Characterization of Timed Languages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-31585-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31584-8
Online ISBN: 978-3-642-31585-5
eBook Packages: Computer ScienceComputer Science (R0)