Abstract
LRM-Trees are an elegant way to partition a sequence of values into sorted consecutive blocks, and to express the relative position of the first element of each block within a previous block. They were used to encode ordinal trees and to index integer arrays in order to support range minimum queries on them. We describe how they yield many other convenient results in a variety of areas: compressed succinct indices for range minimum queries on partially sorted arrays; a new adaptive sorting algorithm; and a compressed succinct data structure for permutations supporting direct and inverse application in time inversely proportional to the permutation’s compressibility.
First and third author partially funded by Fondecyt grant 1-110066, Chile; second author supported by a DFG grant (German Research Foundation).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary relations, and multi-labeled trees. In: Proc. SODA, pp. 680–689. ACM/SIAM (2007)
Barbay, J., Navarro, G.: Compressed representations of permutations, and applications. In: Proc. STACS, pp. 111–122. IBFI Schloss Dagstuhl (2009)
Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005)
Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)
Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)
Chen, K.-Y., Chao, K.-M.: On the range maximum-sum segment query problem. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 294–305. Springer, Heidelberg (2004)
Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved algorithms for the range next value problem and applications. In: Proc. STACS, pp. 205–216. IBFI Schloss Dagstuhl (2008)
Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. In: Proc. SODA, pp. 392–401. ACM/SIAM (2009)
Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)
Fischer, J., Heun, V., Stühler, H.M.: Practical entropy bounded schemes for O(1)-range minimum queries. In: Proc. DCC, pp. 272–281. IEEE Press, Los Alamitos (2008)
Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)
Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures. Theor. Comput. Sci. 379(3), 405–417 (2007)
Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput. Sci. 387(3), 348–359 (2007)
Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. SODA, pp. 841–850. ACM/SIAM (2003)
Huffman, D.: A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E. 40, 1090–1101 (1952)
Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554. IEEE Computer Society, Los Alamitos (1989)
Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered trees. In: Proc. SODA, pp. 575–584. ACM/SIAM (2007)
Knuth, D.E.: Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison-Wesley Professional, Reading (1998)
Levcopoulos, C., Petersson, O.: Sorting shuffled monotone sequences. Inf. Comput. 112(1), 37–50 (1994)
Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 229–241. Springer, Heidelberg (2007)
Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)
Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), Article No. 2 (2007)
Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313. IEEE Computer Society, Los Alamitos (2008)
Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. ACM Transactions on Algorithms 3(4), Art. 43 (2007)
Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds. In: Proc. SODA, pp. 1230–1239. ACM/SIAM (2006)
Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp. 134–149. ACM/SIAM (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barbay, J., Fischer, J., Navarro, G. (2011). LRM-Trees: Compressed Indices, Adaptive Sorting, and Compressed Permutations. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-21458-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21457-8
Online ISBN: 978-3-642-21458-5
eBook Packages: Computer ScienceComputer Science (R0)