Abstract
We show that every graph of maximum degree three can be drawn in three dimensions with at most two bends per edge, and with 120° angles between any two edge segments meeting at a vertex or a bend. We show that every graph of maximum degree four can be drawn in three dimensions with at most three bends per edge, and with 109.5° angles, i.e., the angular resolution of the diamond lattice, between any two edge segments meeting at a vertex or bend.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Heidelberg (2010), doi:10.1007/978-3-642-11805-0_5
Biedl, T.C., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s matching theorem. Journal of Algorithms 38(1), 110–134 (2001), doi:10.1006/jagm.2000.1132
Biedl, T.C., Thiele, T., Wood, D.R.: Three-dimensional orthogonal graph drawing with optimal volume. Algorithmica 44(3), 233–255 (2006), doi:10.1007/s00453-005-1148-z
Carlson, J., Eppstein, D.: Trees with convex faces and optimal angles. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 77–88. Springer, Heidelberg (2007)
Clare, B.W., Kepert, D.L.: The closest packing of equal circles on a sphere. Proc. Roy. Soc. London A 405(1829), 329–344 (1986), doi:10.1098/rspa.1986.0056
Demaine, E.D.: Problem 46: 3D minimum-bend orthogonal graph drawings. The Open Problems Project. Posed by David R. Wood at the CCCG, open-problem session (2002), http://maven.smith.edu/~orourke/TOPP/P46.html
Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009), doi:10.1007/978-3-642-03367-4_19
Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. arXiv:0908.3545 (2009)
Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: Proc. 20th ACM Symp. Computational Geometry (SoCG 2004), pp. 340–346 (2004), doi:10.1145/997817.997868, arXiv:cs.CG/0312056
Eades, P., Symvonis, A., Whitesides, S.: Three-dimensional orthogonal graph drawing algorithms. Discrete Applied Mathematics 103(1-3), 55–87 (2000), doi:10.1016/S0166-218X(00)00172-4
Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171. Springer, Heidelberg (2001), doi:10.1007/3-540-44969-8_6
Eppstein, D.: Isometric diamond subgraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 384–389. Springer, Heidelberg (2009), doi:10.1007/978-3-642-00219-9_37
Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994), doi:10.1007/BFb0049393
Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999), doi:10.1007/3-540-37623-2_13
Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Proc. IEEE Pacific Visualization Symp., pp. 41–46 (2008), doi:10.1109/PACIFICVIS.2008.4475457
Malitz, S.: On the angular resolution of planar graphs. In: Proc. 24th ACM Symp. Theory of Computing (STOC 1992), pp. 527–538 (1992), doi:10.1145/129712.129764
Petersen, J.: Die Theorie der regulären Graphs. Acta Math. 15(1), 193–220 (1891), doi:10.1007/BF02392606
Tammes, P.M.L.: On the origin of the number and arrangement of the places of exit on the surface of pollen grains. Ree. Trav. Bot. Néerl. 27, 1–82 (1930)
Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Theor. Comput. Sci. 299(1-3), 151–178 (2003), doi:10.1016/S0304-3975(02)00044-0
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eppstein, D., Löffler, M., Mumford, E., Nöllenburg, M. (2011). Optimal 3D Angular Resolution for Low-Degree Graphs. In: Brandes, U., Cornelsen, S. (eds) Graph Drawing. GD 2010. Lecture Notes in Computer Science, vol 6502. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18469-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-18469-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18468-0
Online ISBN: 978-3-642-18469-7
eBook Packages: Computer ScienceComputer Science (R0)