Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6393))

Included in the following conference series:

Abstract

Let A be an array of n elements taken from a totally ordered set. We present a data structure of size 3n + o(n) bits that allows us to answer the following queries on A in constant time, without accessing A: (1) given indices i < j, find the position of the minimum in A[i..j], (2) given index i, find the first index to the left of i where A is strictly smaller than at i, and (3) same as (2), but to the right of the query index. Based on this, we present a new compressed suffix tree (CST) with O(1)-navigation that is smaller than previous CSTs. Our data structure also provides a new (practical) approach to compress the LCP-array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2), 205–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing Systems 41(4), 589–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Russo, L.M.S., Navarro, G., Oliveira, A.L.: Fully-compressed suffix trees. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 362–373. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ohlebusch, E., Gog, S.: A compressed enhanced suffix array supporting fast string matching. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 51–62. Springer, Heidelberg (2009)

    Google Scholar 

  7. Fischer, J.: Wee LCP. Inform. Process. Lett. 110(8-9), 117–120 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Välimäki, N., Mäkinen, V., Gerlach, W., Dixit, K.: Engineering a compressed suffix tree implementation. ACM J. Experimental Algorithmics 4, Article no.2 (2009)

    Google Scholar 

  9. Cánovas, R., Navarro, G.: Practical compressed suffix trees. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 94–105. Springer, Heidelberg (2010)

    Google Scholar 

  10. Gog, S., Fischer, J.: Advantages of shared data structures for sequences of balanced parentheses. In: Proc. DCC, pp. 406–415. IEEE Press, Los Alamitos (2010)

    Google Scholar 

  11. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), Article No. 2 (2007)

    Google Scholar 

  12. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. SODA, pp. 841–850. ACM/SIAM (2003)

    Google Scholar 

  13. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010)

    Google Scholar 

  17. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered trees. In: Proc. SODA, pp. 575–584. ACM/SIAM (2007)

    Google Scholar 

  20. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp. 134–149. ACM/SIAM (2010)

    Google Scholar 

  21. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

    Google Scholar 

  22. Fischer, J., Heun, V.: Finding range minima in the middle: Approximations and applications. Mathematics in Computer Science 3(1), 17–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a time-and-space barrier in constructing full-text indices. SIAM J. Comput. 38(6), 2162–2178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hon, W.K., Sadakane, K.: Space-economical algorithms for finding maximal unique matches. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 144–152. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohlebusch, E., Fischer, J., Gog, S. (2010). CST++. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16321-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16320-3

  • Online ISBN: 978-3-642-16321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics