Abstract
Let A be an array of n elements taken from a totally ordered set. We present a data structure of size 3n + o(n) bits that allows us to answer the following queries on A in constant time, without accessing A: (1) given indices i < j, find the position of the minimum in A[i..j], (2) given index i, find the first index to the left of i where A is strictly smaller than at i, and (3) same as (2), but to the right of the query index. Based on this, we present a new compressed suffix tree (CST) with O(1)-navigation that is smaller than previous CSTs. Our data structure also provides a new (practical) approach to compress the LCP-array.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2), 205–222 (2001)
Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)
Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing Systems 41(4), 589–607 (2007)
Russo, L.M.S., Navarro, G., Oliveira, A.L.: Fully-compressed suffix trees. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 362–373. Springer, Heidelberg (2008)
Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)
Ohlebusch, E., Gog, S.: A compressed enhanced suffix array supporting fast string matching. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 51–62. Springer, Heidelberg (2009)
Fischer, J.: Wee LCP. Inform. Process. Lett. 110(8-9), 117–120 (2010)
Välimäki, N., Mäkinen, V., Gerlach, W., Dixit, K.: Engineering a compressed suffix tree implementation. ACM J. Experimental Algorithmics 4, Article no.2 (2009)
Cánovas, R., Navarro, G.: Practical compressed suffix trees. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 94–105. Springer, Heidelberg (2010)
Gog, S., Fischer, J.: Advantages of shared data structures for sequences of balanced parentheses. In: Proc. DCC, pp. 406–415. IEEE Press, Los Alamitos (2010)
Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), Article No. 2 (2007)
Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. SODA, pp. 841–850. ACM/SIAM (2003)
Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)
Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)
Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192. Springer, Heidelberg (2009)
Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010)
Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)
Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)
Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered trees. In: Proc. SODA, pp. 575–584. ACM/SIAM (2007)
Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp. 134–149. ACM/SIAM (2010)
Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)
Fischer, J., Heun, V.: Finding range minima in the middle: Approximations and applications. Mathematics in Computer Science 3(1), 17–30 (2010)
Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a time-and-space barrier in constructing full-text indices. SIAM J. Comput. 38(6), 2162–2178 (2009)
Hon, W.K., Sadakane, K.: Space-economical algorithms for finding maximal unique matches. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 144–152. Springer, Heidelberg (2002)
Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ohlebusch, E., Fischer, J., Gog, S. (2010). CST++. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-16321-0_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16320-3
Online ISBN: 978-3-642-16321-0
eBook Packages: Computer ScienceComputer Science (R0)