Skip to main content

Integrating Information Extraction Agents into a Tourism Recommender System

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6077))

Included in the following conference series:

Abstract

Recommender systems face some problems. On the one hand information needs to be maintained updated, which can result in a costly task if it is not performed automatically. On the other hand, it may be interesting to include third party services in the recommendation since they improve its quality. In this paper, we present an add-on for the Social-Net Tourism Recommender System that uses information extraction and natural language processing techniques in order to automatically extract and classify information from the Web. Its goal is to maintain the system updated and obtain information about third party services that are not offered by service providers inside the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ricci, F., Werthner, H.: Case-based querying for travel planning recommendation. Information Technology and Tourism 4(3-4), 215–226 (2002)

    Google Scholar 

  2. Loh, S., Lorenzi, F., Saldana, R., Litchnow, D.: A tourism recommender system based on collaboration and text analysis. Information Technology and Tourism 6, 157–165

    Google Scholar 

  3. Fesenmaier, D., Ricci, F., Schaumlechner, E., Wober, K., Zanella, C.: Dietorecs: Travel advisory for multiple decision styles. In: Proc. of the ENTER 2003, pp. 232–242 (2003)

    Google Scholar 

  4. Herlocker, J., Konstan, J.A.: Content-independent task-focused recommendation. IEEE Internet Comput. 5, 40–47 (2001)

    Article  Google Scholar 

  5. Rudstrom, A., Fagerberg, P.: Socially enhaced travel booking: a case study. Information Technology and Tourism 6(3)

    Google Scholar 

  6. Sebastia, L., Garcia, I., Onaindia, E., Guzman, C.: E-tourism: A tourist recommendation and planning adaptation. Int. J. Artif. Intell. Tools 18(5), 717–738 (2009)

    Article  Google Scholar 

  7. Lopez, J.S., Bustos, F.A., Julian, V., Rebollo, M.: Developing a multiagent recommender system: A case study in tourism industry. International Transactions on Systems Science and Applications 4, 206–212 (2008)

    Google Scholar 

  8. Flesca, S., Manco, G., Masciari, E., Rende, E., Tagarelli, A.: Web wrapper induction: a brief survey. AI Commun. 17(2), 57–61 (2004)

    Google Scholar 

  9. Kushmerick, N., Thomas, B.: Adaptive information extraction: Core technologies for information agents. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 79–103. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. John Wilbur, W., Sirotkin, K.: The automatic identification of stop words. J. Inf. Sci. 18(1), 45–55 (1992)

    Article  Google Scholar 

  11. Yang, Y.: Noise reduction in a statistical approach to text categorization. In: Proc. of the SIGIR 1995, pp. 256–263 (1995)

    Google Scholar 

  12. Miller, G.A.: WordNet: a lexical database for English. ACM Commun. 38(11), 41 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esparcia, S., Sánchez-Anguix, V., Argente, E., García-Fornes, A., Julián, V. (2010). Integrating Information Extraction Agents into a Tourism Recommender System. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13803-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13803-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13802-7

  • Online ISBN: 978-3-642-13803-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics