Abstract
We introduce the NP-hard graph-based data clustering problem s -Plex Cluster Vertex Deletion, where the task is to delete at most k vertices from a graph so that the connected components of the resulting graph are s-plexes. In an s-plex, every vertex has an edge to all but at most s − 1 other vertices; cliques are 1-plexes. We propose a new method for kernelizing a large class of vertex deletion problems and illustrate it by developing an O(k 2 s 3)-vertex problem kernel for s -Plex Cluster Vertex Deletion that can be computed in O(ksn 2) time, where n is the number of graph vertices. The corresponding “kernelization through tidying” exploits polynomial-time approximation results.
Supported by the DFG, project AREG, NI 369/9.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. J. Comput. System Sci. (2009) (Available electronically)
Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res. (2009) (Avaiable electronically)
van Bevern, R.: A quadratic-vertex problem kernel for s-plex cluster vertex deletion. Studienarbeit, Friedrich-Schiller-Universität Jena, Germany (2009)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)
Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005)
Cook, V.J., Sun, S.J., Tapia, J., Muth, S.Q., Argüello, D.F., Lewis, B.L., Rothenberg, R.B., McElroy, P.D.: The Network Analysis Project Team. Transmission network analysis in tuberculosis contact investigations. J. Infect. Dis. 196, 1517–1527 (2007)
Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex editing. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 226–239. Springer, Heidelberg (2009)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)
Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. (2009) (Available electronically)
Kratsch, S.: Polynomial kernelizations for MIN F\(^{\mbox{+}} \mathrm{\Pi}_{\mbox{1}}\) and MAX NP. In: Proc. 26th STACS, pp. 601–612. IBFI Dagstuhl, Germany (2009)
Marx, D., Schlotter, I.: Parameterized graph cleaning problems. Discrete Appl. Math., (2009) (Available electronically)
Memon, N., Kristoffersen, K.C., Hicks, D.L., Larsen, H.L.: Detecting critical regions in covert networks: A case study of 9/11 terrorists network. In: Proc. 2nd ARES, pp. 861–870. IEEE Computer Society Press, Los Alamitos (2007)
Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1-2), 173–182 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Bevern, R., Moser, H., Niedermeier, R. (2010). Kernelization through Tidying. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-12200-2_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12199-9
Online ISBN: 978-3-642-12200-2
eBook Packages: Computer ScienceComputer Science (R0)