Skip to main content

Kernelization through Tidying

A Case Study Based on s-Plex Cluster Vertex Deletion

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

We introduce the NP-hard graph-based data clustering problem s -Plex Cluster Vertex Deletion, where the task is to delete at most k vertices from a graph so that the connected components of the resulting graph are s-plexes. In an s-plex, every vertex has an edge to all but at most s − 1 other vertices; cliques are 1-plexes. We propose a new method for kernelizing a large class of vertex deletion problems and illustrate it by developing an O(k 2 s 3)-vertex problem kernel for s -Plex Cluster Vertex Deletion that can be computed in O(ksn 2) time, where n is the number of graph vertices. The corresponding “kernelization through tidying” exploits polynomial-time approximation results.

Supported by the DFG, project AREG, NI 369/9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. J. Comput. System Sci. (2009) (Available electronically)

    Google Scholar 

  2. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res. (2009) (Avaiable electronically)

    Google Scholar 

  3. van Bevern, R.: A quadratic-vertex problem kernel for s-plex cluster vertex deletion. Studienarbeit, Friedrich-Schiller-Universität Jena, Germany (2009)

    Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MATH  Google Scholar 

  5. Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37(3), 233–242 (2005)

    Article  Google Scholar 

  6. Cook, V.J., Sun, S.J., Tapia, J., Muth, S.Q., Argüello, D.F., Lewis, B.L., Rothenberg, R.B., McElroy, P.D.: The Network Analysis Project Team. Transmission network analysis in tuberculosis contact investigations. J. Infect. Dis. 196, 1517–1527 (2007)

    Article  Google Scholar 

  7. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex editing. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 226–239. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  9. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. (2009) (Available electronically)

    Google Scholar 

  10. Kratsch, S.: Polynomial kernelizations for MIN F\(^{\mbox{+}} \mathrm{\Pi}_{\mbox{1}}\) and MAX NP. In: Proc. 26th STACS, pp. 601–612. IBFI Dagstuhl, Germany (2009)

    Google Scholar 

  11. Marx, D., Schlotter, I.: Parameterized graph cleaning problems. Discrete Appl. Math., (2009) (Available electronically)

    Google Scholar 

  12. Memon, N., Kristoffersen, K.C., Hicks, D.L., Larsen, H.L.: Detecting critical regions in covert networks: A case study of 9/11 terrorists network. In: Proc. 2nd ARES, pp. 861–870. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  13. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)

    MATH  MathSciNet  Google Scholar 

  14. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1-2), 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Bevern, R., Moser, H., Niedermeier, R. (2010). Kernelization through Tidying. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics