Skip to main content

Modelling the LLL Algorithm by Sandpiles

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

The LLL algorithm aims at finding a “reduced” basis of a Euclidean lattice and plays a primary role in many areas of mathematics and computer science. However, its general behaviour is far from being well understood. There are already many experimental observations about the number of iterations or the geometry of the output, that raise challenging questions which remain unanswered and lead to natural conjectures which are yet to be proved. However, until now, there exist few experimental observations about the precise execution of the algorithm. Here, we provide experimental results which precisely describe an essential parameter of the execution, namely the “logarithm of the decreasing ratio”. These experiments give arguments towards a “regularity” hypothesis (R). Then, we propose a simplified model for the LLL algorithm based on the hypothesis (R), which leads us to discrete dynamical systems, namely sandpiles models. It is then possible to obtain a precise quantification of the main parameters of the LLL algorithm. These results fit the experimental results performed on general input bases, which indirectly substantiates the validity of such a regularity hypothesis and underlines the usefulness of such a simplified model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M.: Optimal lower bounds for the Korkine-Zolotareff parameters of a lattice and for Schnorr’s algorithm for the shortest vector problem. Theory of Computing 4(1), 21–51 (2008)

    Article  MathSciNet  Google Scholar 

  2. Akhavi, A.: Random lattices, threshold phenomena and efficient reduction algorithms. Theoret. Comput. Sci. 287(2), 359–385 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N ≤ 0.292. IEEE Trans. Inform. Theory 46(4), 1339–1349 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daudé, H., Vallée, B.: An upper bound on the average number of iterations of the LLL algorithm. Theoretical Computer Science 123(1), 95–115 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gama, N., Nguyen, P.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Georgieva, M.: Étude expérimentale de l’algorithme LLL sur certaines bases de Coppersmith, Master Thesis, University of Caen (2009)

    Google Scholar 

  8. Goles, E., Kiwi, M.A.: Games on line graphs and sandpiles. Theoret. Comput. Sci. 115(2), 321–349 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jensen, H.J.: Self-organized criticality. In: Emergent complex behavior in physical and biological systems. Cambridge Lecture Notes in Physics, vol. 10. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  10. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nguyen, P., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Vallée, B.: Euclidean Dynamics. Discrete and Continuous Dynamical Systems 15(1), 281–352 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vallée, B., Vera, A.: Probabilistic analyses of lattice reduction algorithms. In: ch.3. The LLL Algorithm. Collection Information Security and Cryptography Series. Springer, Heidelberg (2009)

    Google Scholar 

  14. Vera, A.: Analyses de l’algorithme de Gauss. Applications à l’analyse de l’algorithme LLL, PhD Thesis, Universiy of Caen (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madritsch, M., Vallée, B. (2010). Modelling the LLL Algorithm by Sandpiles. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics