Skip to main content

Packet Routing on the Grid

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

The packet routing problem, i.e., the problem to send a given set of unit-size packets through a network on time, belongs to one of the most fundamental routing problems with important practical applications, e.g., in traffic routing, parallel computing, and the design of communication protocols. The problem involves critical routing and scheduling decisions. One has to determine a suitable (short) origindestination path for each packet and resolve occurring conflicts between packets whose paths have an edge in common. The overall aim is to find a path for each packet and a routing schedule with minimum makespan.

A significant topology for practical applications are grid graphs. In this paper, we therefore investigate the packet routing problem under the restriction that the underlying graph is a grid. We establish approximation algorithms and complexity results for the general problem on grids, and under various constraints on the start and destination vertices or on the paths of the packets.

This work was partially supported by Berlin Mathematical School, by DFG research center Matheon, and by the DFG Focus Program 1307 within the project “Algorithm Engineering for Real-time Scheduling and Routing”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-constrained scheduling of weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adler, M., Sitaraman, R., Rosenberg, A., Unger, W.: Scheduling time-constrained communication in linear networks. In: Proceedings of the 10th annual ACM symposium on Parallel algorithms and architectures, pp. 269–278 (1998)

    Google Scholar 

  3. Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct routing: Algorithms and complexity. Algorithmica 45, 45–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Busch, C., Magdon-Ismail, M., Xi, J.: Optimal oblivious path selection on the mesh. IEEE Transactions on Computers 57, 660–671 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate storage. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms (2003)

    Google Scholar 

  6. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–1630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  9. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science 2719, 397–409 (2003)

    MathSciNet  Google Scholar 

  10. Hall, A., Langkau, K., Skutella, M.: An FPTAS for quickest multicommodity flows with inflow-dependent transit times. Algorithmica 47, 299–321 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations Research 25, 36–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Di Ianni, M.: Efficient delay routing. Theoretical Computer Science 196, 131–151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koch, R., Peis, B., Skutella, M., Wiese, A.: Real-time message routing and scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) RANDOM 2009 and APPROX 2009. LNCS, vol. 5687, pp. 217–230. Springer, Heidelberg (2009)

    Google Scholar 

  14. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in O(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leighton, F.T., Makedon, F., Tollis, I.G.: A 2n − 2 step algorithm for routing in an n ×n array with constant size queues. In: Proceedings of the 1st Annual Symposium on Parallel Algorithms and Architectures, pp. 328–335 (1989)

    Google Scholar 

  17. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Performance Analysis (2004)

    Google Scholar 

  18. Mansour, Y., Patt-Shamir, B.: Many-to-one packet routing on grids. In: Proceedings of the 27th Annual Symposium on Theory of Computing, pp. 258–267 (1995)

    Google Scholar 

  19. Peis, B., Skutella, M., Wiese, A.: Packet routing on the grid. Technical Report 012-2009, Technische Universität Berlin (March 2009)

    Google Scholar 

  20. Peis, B., Skutella, M., Wiese, A.: Packet routing: Complexity and algorithms. In: Proceedings of the 7th Workshop on Approximation and Online Algorithms. LNCS. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  21. Rajasekaran, S.: Randomized algorithms for packet routing on the mesh. Technical Report MS-CIS-91-92, Dept. of Computer and Information Sciences, Univ. of Pennsylvania, Philadelphia, PA (1991)

    Google Scholar 

  22. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Spenke, I.: Complexity and approximation of static k-splittable flows and dynamic grid flows. PhD thesis, Technische Universität Berlin (2006)

    Google Scholar 

  24. Srinivasan, A., Teo, C.-P.: A constant-factor approximation algorithm for packet routing and balancing local vs. global criteria. SIAM Journal on Computing 30 (2001)

    Google Scholar 

  25. Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K., Sevast’janov, S.V., Shmoys, D.B.: Short shop schedules. Operations Research 45, 288–294 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peis, B., Skutella, M., Wiese, A. (2010). Packet Routing on the Grid. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics