Skip to main content

Dual Phase Learning for Large Scale Video Gait Recognition

  • Conference paper
Advances in Multimedia Modeling (MMM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5916))

Included in the following conference series:

Abstract

Accurate gait recognition from video is a complex process involving heterogenous features, and is still being developed actively. This article introduces a novel framework, called GC2F, for effective and efficient gait recognition and classification. Adopting a ”refinement-and-classification” principle, the framework comprises two components: 1) a classifier to generate advanced probabilistic features from low level gait parameters; and 2) a hidden classifier layer (based on multilayer perceptron neural network) to model the statistical properties of different subject classes. To validate our framework, we have conducted comprehensive experiments with a large test collection, and observed significant improvements in identification accuracy relative to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: Averaged silhouette. In: Proceedings of International Conference on Pattern Recognition, pp. 211–214 (2004)

    Google Scholar 

  2. Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 863–876 (2006)

    Article  Google Scholar 

  3. Zhou, X., Bhanu, B.: Integrating Face and Gait for Human Recognition at a Distance in Video. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(5), 1119–1137 (2007)

    Article  Google Scholar 

  4. Huang, P.: Automatic gait recognition via statistical approaches for extended template features. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31(5), 818–824 (2001)

    Article  Google Scholar 

  5. Liu, Z., Sarkar, S.: Effect of silhouette quality on hard problems in gait recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35(2), 170–183 (2005)

    Article  Google Scholar 

  6. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: Data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

  7. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  8. Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Techn. 14(2), 149–158 (2004)

    Article  Google Scholar 

  9. de Chazal, P., Flynn, J., Reilly, R.B.: Automated processing of shoeprint images based on the fourier transform for use in forensic science. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 341–350 (2005)

    Article  Google Scholar 

  10. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 148–155 (2002)

    Google Scholar 

  11. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)

    Article  Google Scholar 

  12. Ross, A., Dass, S.C., Jain, A.K.: Fingerprint warping using ridge curve correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 19–30 (2006)

    Article  Google Scholar 

  13. Jain, A.K., Feng, J.: Latent palmprint matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 99(1) (2008)

    Google Scholar 

  14. BenAbdelkader, C., Cutler, R., Nanda, H., Davis, L.: Eigengait: Motion-based recognition of people using image self-similarity. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 284–294. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Cutting, J., Kozlowski, L.: Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin Psychonomic Soc. 9(5), 353–356 (1977)

    Google Scholar 

  16. Murray, M., Drought, A., Kory, R.: Walking pattern of normal men. J. Bone and Joint Surgery 46-A(2), 335–360 (1964)

    Google Scholar 

  17. Wagg, D.K., Nixon, M.S.: On automated model-based extraction and analysis of gait. In: Proc. of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004), pp. 11–16 (2004)

    Google Scholar 

  18. Guo, B., Nixon, M.S.: Gait feature subset selection by mutual information. IEEE Transactions on Systems, Man, and Cybernetics, Part A 39(1), 36–46 (2009)

    Article  Google Scholar 

  19. Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: Gait components and their application to gender recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(2), 145–155 (2008)

    Article  MATH  Google Scholar 

  20. Niyogi, S., Adelson, E.: Analyzing and recognizing walking figures in xyt. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 469–474 (1994)

    Google Scholar 

  21. Bregler, C.: Learning and recognizing human dynamics in video sequences. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 568–574 (1997)

    Google Scholar 

  22. Bobick, A., Jonhson, A.: Gait recognition using static activity-specific analysis. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (2001)

    Google Scholar 

  23. Dietterich, T., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research 2 (1995)

    Google Scholar 

  24. Cunado, D., Nixon, M., Carter, J.: On the learnability and design of output codes for multiclass problems. Comput. Vis. Image Understand. 90(1) (2003)

    Google Scholar 

  25. Müller, B., Reinhardt, J., Strickland, M.T.: Neural Networks: An Introduction (Physics of Neural Networks). Springer, Heidelberg (1995)

    Google Scholar 

  26. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  27. McLachLan, G., Peel, D. (eds.): Finite Mixture Models. Wiley Interscience, Hoboken (2000)

    MATH  Google Scholar 

  28. Dempster, A., Laird, N., Rubin, D.: Likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  29. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan Publishing, New York (1994)

    MATH  Google Scholar 

  30. Kong, E., Dietterich, T.: Error-correcting output coding corrects bias and variance. In: Proc. of the 12th IEEE International Conference on Machine Learning, pp. 313–321 (1995)

    Google Scholar 

  31. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, J., Pang, H., Tao, D., Li, X. (2010). Dual Phase Learning for Large Scale Video Gait Recognition. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11301-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11300-0

  • Online ISBN: 978-3-642-11301-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics