Skip to main content

A Rock Structure Recognition System Using FMI Images

  • Conference paper
Neural Information Processing (ICONIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5863))

Included in the following conference series:

Abstract

Formation Micro Imager (FMI) can directly reflect changes of wall stratum and rock structures. It is also an important method to divide stratum and identify lithology. However, people usually deal with FMI images manually, which is extremely inefficient and may incur heavy burdens in practice. In this paper, with characteristics of rock structures from FMI images, we develop an efficient and intelligent rock structure recognition system by engaging image processing and pattern recognition technologies. First, we choose the most effective color and shape features for rock images. Then, the corresponding single classifier is designed to recognize the FMI images. Finally, all these classifiers are combined to construct the recognition system. Experimental results show that our system is able to achieve promising performance and significantly reduce the complexity and difficulty of the rock structure recognition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Singh, U., Van Der Baan, D.: FMS/FMI borehole imaging of carbonate gas reservoirs, Central Luconia Province, offshore Sarawak, Malaysia. In: 1994 American Association of Petroleum Geologists (AAPG) international conference and exhibition, Kuala Lumpur, Malaysia, pp. 1162–1163. AAPG Bulletin (2001)

    Google Scholar 

  2. Laubach, S.E., Gale, J.F.W.: Obtaining Fracture Information for Low-Permeability (Tight) Gas Sandstones from Sidewall Cores. Journal of Petroleum Geology 29(2), 147–158 (2006)

    Article  Google Scholar 

  3. Endres, H., Lohr, T., Trappe, H.: Quantitative fracture prediction from seismic data. Petroleum Geoscience 14, 369–377 (2008)

    Article  Google Scholar 

  4. Payenberg, T.H.D., Lang, S.C., Koch, R.: A Simple Method for Orienting Conventional Core Using Microresistivity (FMS) Images and a Mechanical Goniometer to Measure Directional Structures on Cores. Journal of Sedimentary Research 70, 419–422 (2000)

    Article  Google Scholar 

  5. Russell, S.D., Akbar, M., Vissapragada, B., Walkden, G.M.: Rock Types and Permeability Prediction from Dipmeter and Image Logs: Shuaiba Reservoir (Aptian), Abu Dhabi. AAPG Bulletin 86, 1709–1732 (2002)

    Google Scholar 

  6. Roli, F., Giacinto, G., Vernazza, G.: Methods for Designing Multiple Classifiers Systems. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 78–87. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Chen Lei, K.: A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognition 42(5), 629–644 (2009)

    Article  MATH  Google Scholar 

  8. Kang, H.J., David, D.: Selection of classifiers for the construction of multiple classifier systems. In: 8th International Conference on Document Analysis and Recognition, Seoul, Korea, pp. 1194–1198 (2005)

    Google Scholar 

  9. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)

    Article  Google Scholar 

  10. Ruta, D., Gabrys, B.: Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 399–408. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, XC., Liu, Q., Hao, HW., Wang, ZB., Huang, K. (2009). A Rock Structure Recognition System Using FMI Images. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10677-4_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10676-7

  • Online ISBN: 978-3-642-10677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics