Skip to main content

Supervised Semantic Indexing

  • Conference paper
Advances in Information Retrieval (ECIR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5478))

Included in the following conference series:

  • 3299 Accesses

Abstract

We present a class of models that are discriminatively trained to directly map from the word content in a query-document or document- document pair to a ranking score. Like Latent Semantic Indexing (LSI), our models take account of correlations between words (synonymy, pol- ysemy). However, unlike LSI our models are trained with a supervised signal directly on the task of interest, which we argue is the reason for our superior results. We provide an empirical study on Wikipedia documents, using the links to define document-document or query-document pairs, where we obtain state-of-the-art performance using our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval. Addison-Wesley, Harlow (1999)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: ICML 2005, pp. 89–96 (2005)

    Google Scholar 

  4. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  5. Goel, S., Langford, J., Strehl, A.: Predictive indexing for fast search. In: Advances in Neural Information Processing Systems, vol. 21 (2009)

    Google Scholar 

  6. Grangier, D., Bengio, S.: Inferring document similarity from hyperlinks. In: CIKM 2005, pp. 359–360. ACM, New York (2005)

    Google Scholar 

  7. Grangier, D., Bengio, S.: A discriminative kernel-based approach to rank images from text queries. IEEE Trans. PAMI 30(8), 1371–1384 (2008)

    Article  Google Scholar 

  8. Guyon, I.M., Gunn, S.R., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction: Foundations and Applications. Springer, Heidelberg (2006)

    Google Scholar 

  9. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR 1999, pp. 50–57. ACM Press, New York (1999)

    Google Scholar 

  11. http://research.microsoft.com/en-us/um/beijing/projects/letor/index.html

  12. http://trec.nist.gov/

  13. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM SIGKDD, pp. 133–142 (2002)

    Google Scholar 

  14. Zighelnic, L., Kurland, O.: Query-drift prevention for robust query expansion. In: SIGIR 2008, pp. 825–826. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, B., Weston, J., Collobert, R., Grangier, D. (2009). Supervised Semantic Indexing. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds) Advances in Information Retrieval. ECIR 2009. Lecture Notes in Computer Science, vol 5478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00958-7_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00958-7_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00957-0

  • Online ISBN: 978-3-642-00958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics