Abstract
We present a class of models that are discriminatively trained to directly map from the word content in a query-document or document- document pair to a ranking score. Like Latent Semantic Indexing (LSI), our models take account of correlations between words (synonymy, pol- ysemy). However, unlike LSI our models are trained with a supervised signal directly on the task of interest, which we argue is the reason for our superior results. We provide an empirical study on Wikipedia documents, using the links to define document-document or query-document pairs, where we obtain state-of-the-art performance using our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval. Addison-Wesley, Harlow (1999)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: ICML 2005, pp. 89–96 (2005)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)
Goel, S., Langford, J., Strehl, A.: Predictive indexing for fast search. In: Advances in Neural Information Processing Systems, vol. 21 (2009)
Grangier, D., Bengio, S.: Inferring document similarity from hyperlinks. In: CIKM 2005, pp. 359–360. ACM, New York (2005)
Grangier, D., Bengio, S.: A discriminative kernel-based approach to rank images from text queries. IEEE Trans. PAMI 30(8), 1371–1384 (2008)
Guyon, I.M., Gunn, S.R., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction: Foundations and Applications. Springer, Heidelberg (2006)
Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. MIT Press, Cambridge (2000)
Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR 1999, pp. 50–57. ACM Press, New York (1999)
Joachims, T.: Optimizing search engines using clickthrough data. In: ACM SIGKDD, pp. 133–142 (2002)
Zighelnic, L., Kurland, O.: Query-drift prevention for robust query expansion. In: SIGIR 2008, pp. 825–826. ACM, New York (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bai, B., Weston, J., Collobert, R., Grangier, D. (2009). Supervised Semantic Indexing. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds) Advances in Information Retrieval. ECIR 2009. Lecture Notes in Computer Science, vol 5478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00958-7_81
Download citation
DOI: https://doi.org/10.1007/978-3-642-00958-7_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00957-0
Online ISBN: 978-3-642-00958-7
eBook Packages: Computer ScienceComputer Science (R0)