Abstract
Very recently, the concept of Traceable Identity-based Encryption (IBE) scheme (or Accountable Authority Identity based Encryption scheme) was introduced in Crypto 2007. This concept enables some mechanisms to reduce the trust of a private key generator (PKG) in an IBE system. The aim of this paper is threefold. First, we discuss some subtleties in the first traceable IBE scheme in the Crypto 2007 paper. Second, we present an extension to this work by having the PKG’s master secret key retrieved automatically if more than one user secret key are released. This way, the user can produce a concrete proof of misbehaviour of the PKG in the court. In contrast to previous approach, our idea gives strong incentive for the PKG to strengthen the security of the system since if someone can successfully release a user’s secret key, it means that his security is also compromised. We present a formal model to capture our idea. Third, we present an efficient construction based on Gentry’s IBE that satisfies our model and prove its security. Our construction is proven secure in the random oracle model. Nevertheless, we should emphasize that the aim of this paper is to introduce the new model to strengthen the IBE system.
M. H. Au and W. Susilo’s work was partially supported by ARC Linkage Project LP0667899 and ARC Discovery Grants DP0663306 and DP0877123. Q. Huang, D. S. Wong and G. Yang’s work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (RGC Ref. No. CityU 122107).
Chapter PDF
Similar content being viewed by others
References
Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)
Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)
Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–448. Springer, Heidelberg (2007)
Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. Cryptology ePrint Archive, Report 2007/368 (2007); revised and extended version of [4], http://eprint.iacr.org/2007/368
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 235–251. Springer, Heidelberg (1990)
Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report 260, Institute for Theoretical Computer Science, ETH Zurich (1997)
Cramer, R., Damgård, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)
Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Au, M.H., Huang, Q., Liu, J.K., Susilo, W., Wong, D.S., Yang, G. (2008). Traceable and Retrievable Identity-Based Encryption . In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2008. Lecture Notes in Computer Science, vol 5037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68914-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-68914-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68913-3
Online ISBN: 978-3-540-68914-0
eBook Packages: Computer ScienceComputer Science (R0)