Skip to main content

Abstract

We introduce strong blender s. A strong blender Ble(·,·) uses weak sources X, Y to produce Ble(X,Y) that is statistically random even if one is given Y. Strong blenders generalize strong extractors [15] and extractors from two weak random sources [25,6]. We show that non-constructive strong blenders can extract all the randomness from X, as long as Y has logarithmic min-entropy. We also give explicit strong blenders which work provided the sum of the min-entropies of X and Y is at least their block length. Finally, we show that strong blenders have applications to cryptographic systems for parties that have independent weak sources of randomness. In particular, we extend the results of Maurer and Wolf [12] and show that parties that are not able to sample even a single truly random bit can still perform privacy amplification over an adversarially controlled channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Babai, L., Hajnal, P., Komlos, J., Pudlak, P.: Two lower bounds for branching programs. In: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pp. 30–38 (1986)

    Google Scholar 

  2. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley Interscience, New York (2000)

    Book  MATH  Google Scholar 

  3. Andreev, A., Clementi, A., Rolim, J., Trevisan, L.: Dispersers, deterministic amplification, and weak random sources. SIAM J. on Comput. 28(6), 2103–2116 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized Privacy Amplification. IEEE Transaction on Information Theory 41(6), 1915–1923 (1995)

    Article  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Robert, J.-M.: How to reduce your enemy’s information. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 468–476. Springer, Heidelberg (1986)

    Google Scholar 

  6. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, A., Wigderson, A.: Dispersers, deterministic amplification, and weak random sources. In: Proc. of FOCS, pp. 14–19 (1989)

    Google Scholar 

  8. Dodis, Y., Oliveira, R.: On extracting private randomness over a public channel (extended version), Available from http://www.math.nyu.edu/~oliveira/extracting.pdf

  9. Dodis, Y., Spencer, J.: On the (Non-)Universality of the One-Time Pad. In: Proc. of FOCS (2002)

    Google Scholar 

  10. Janson, S., Luksak, T., Ruciński, A.: Random Graphs. Wiley Interscience, New York (2000)

    MATH  Google Scholar 

  11. Lu, C., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal Up to Constant Factors. In: Proc. of STOC (2003)

    Google Scholar 

  12. Maurer, U., Wolf, S.: Privacy Amplification Secure Against Active Adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer, Heidelberg (1997)

    Google Scholar 

  13. McInnes, J., Pinkas, B.: On the Impossibility of Private Key Cryptography with Weakly Random Keys. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 421–435. Springer, Heidelberg (1991)

    Google Scholar 

  14. Nisan, N., Ta-Shma, A.: Extracting Randomness: a survey and new constructions. JCSS 58(1), 148–173 (1999)

    MATH  MathSciNet  Google Scholar 

  15. Nisan, N., Zuckerman, D.: Randomness is Linear in Space. JCSS 52(1), 43–52 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Rónyai, L., Babai, L., Ganapathy, M.: On the number of zero-patterns in a sequence of polynomials Journal of the AMS (2002)

    Google Scholar 

  17. Sántha, M., Vazirani, U.: Generating Quasi-Random Sequences from Semi-Random Sources. Journal of Computer and System Sciences 33(1), 75–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shaltiel, R.: Recent developments in Explicit Constructions of Extractors. Bulletin of the EATCS, vol. 77, pp. 67–95 (2002)

    Google Scholar 

  19. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: Proceedings of FOCS 2001, pp. 648–657. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  20. Sipser, M.: Expanders, Randomness or Time versus Space. Journal of Computer and Systems Sciences 36, 379–383 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ta-Shma, A., Radhakrishnan, J.: Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Trevisan, L.: Construction of Extractors Using PseudoRandom Generators. In: Proc. of STOC, pp. 141–148 (1999)

    Google Scholar 

  23. Trevisan, L., Vadhan, S.: Extracting Randomness from Samplable Distributions. In: Proc. of FOCS (2000)

    Google Scholar 

  24. Vazirani, U.: Randomness, Adversaries and Computation. PhD Thesis, University of California, Berkeley (1986)

    Google Scholar 

  25. Vazirani, U.: Strong Communication Complexity or Generating Quasi-Random Sequences from Two Communicating Semi-Random Sources. Combinatorica 7(4), 375–392 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vazirani, U., Vazirani, V.: Random polynomial time is equal to slightly-random polynomial time. In: Proc. of 26th FOCS, pp. 417–428 (1985)

    Google Scholar 

  27. Wigderson, A.: Open problems. In: Notes from DIMACS Workshop on Pseudorandomness and Explicit Combinatorial Constructions (1999)

    Google Scholar 

  28. Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorithmica 16(4/5), 367–391 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dodis, Y., Oliveira, R. (2003). On Extracting Private Randomness over a Public Channel. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics