Skip to main content

Solving Non-clausal Formulas with DPLL Search

  • Conference paper
Principles and Practice of Constraint Programming – CP 2004 (CP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

Abstract

Great progress has been made on DPLL based SAT solvers operating on CNF encoded SAT theories. However, for most problems CNF is not a very natural representation. Typically these problems are more easily expressed using unrestricted propositional formulae and hence must be converted to CNF before modern SAT solvers can be applied. This conversion entails a considerable loss of information about the problem’s structure. In this work we demonstrate that conversion to CNF is both unnecessary and undesirable. In particular, we demonstrate that a SAT solver which operates directly on a propositional formula can achieve the same efficiency as a highly optimized modern CNF solver. Furthermore, since the original formula remains intact, such a solver can exploit the original problem structure to improve over CNF solvers. We present empirical evidence showing that exploiting the original structure can yield considerable benefits.

An extended abstract on this topic was presented at the SAT-2004 conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 4, 394–397 (1962)

    Article  MathSciNet  Google Scholar 

  2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In: Proc. of the Design Automation Conference, DAC (2001)

    Google Scholar 

  3. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic 1967–1970, vol. 2, Springer, Heidelberg (1983); Originally published 1970

    Google Scholar 

  4. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lang, J., Marquis, P.: Complexity results for independence and definability in propositional logic. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 356–367 (1998)

    Google Scholar 

  6. Li, C.M.: Integrating equivalence reasoning into Davis-Putnam procedure. In: Proceedings of the AAAI National Conference (AAAI), pp. 291–296 (2000)

    Google Scholar 

  7. Ostrowski, R., Grégoire, E., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Beame, P., Kautz, H., Sabharwal, A.: Using problem structure for efficient clause learning. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 242–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal formulas. In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 84–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables for propositional satisfiability. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 23–26. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for Boolean circuits. In: AI&M 2004, 8th International Symposium on Artificial Intelligence and Mathematics (2004), Available on-line at http://rutcor.rutgers.edu/amai/aimath04/

  12. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in Boolean satisfiability. In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE 2004), vol. I, p. 10260. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Gupta, A., Gupta, A., Yang, Z., Ashar, P.: Dynamic detection and removal of inactive clauses in SAT with application in image computation. In: Proceedings of the 38th conference on Design automation, pp. 536–541. ACM Press, New York (2001)

    Google Scholar 

  14. Circuit-based Boolean Reasoning. In: Proceedings of the 38th conference on Design automation, ACM Press, New York (2001)

    Google Scholar 

  15. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of circuitbased and cnf-based algorithms for a high-performance SAT solver. In: Proceedings of the 39th conference on Design automation, pp. 747–750. ACM Press, New York (2002)

    Google Scholar 

  16. Junttila, T., Niemelä, I.: Towards an efficient tableau method for Boolean circuit satisfiability checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 553–567. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pp. 279–285. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  18. Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. In: Johnson, D., Trick, M. (eds.) Cliques, Coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 559–586. American Mathematical Society, Providence (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thiffault, C., Bacchus, F., Walsh, T. (2004). Solving Non-clausal Formulas with DPLL Search. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics