Skip to main content

Mining of Evolving Data Streams with Privacy Preservation

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3056))

Included in the following conference series:

  • 3074 Accesses

Abstract

The data stream domain has become increasingly important in recent years because of its applicability to a wide variety of applications. Problems such as data mining and privacy preservation which have been studied for traditional data sets cannot be easily solved for the data stream domain. This is because the large volume of data arriving in a stream renders most algorithms to inefficient as most mining and privacy preservation algorithms require multiple scans of data which is unrealistic for stream data. More importantly, the characteristics of the data stream can change over time and the evolving pattern needs to be captured. In this talk, I’ll discuss the issued and focus on how to mine evolving data streams and preserve privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, P.S. (2004). Mining of Evolving Data Streams with Privacy Preservation. In: Dai, H., Srikant, R., Zhang, C. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2004. Lecture Notes in Computer Science(), vol 3056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24775-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22064-0

  • Online ISBN: 978-3-540-24775-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics