Skip to main content

Improving Aspect Identification with Reviews Segmentation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11108))

  • 1882 Accesses

Abstract

Aspect identification, a key sub-task in Aspect-Based Sentiment Analysis (ABSA), aims to identify aspect categories from online user reviews. Inspired by the observation that different segments of a review usually express different aspect categories, we propose a reviews-segmentation-based method to improve aspect identification. Specifically, we divide a review into several segments according to the sentence structure, and then automatically transfer aspect labels from the original review to its derived segments. Trained with the new constructed segment-level dataset, a classifier can achieve better performance for aspect identification. Another contribution of this paper is extracting alignment features, which can be leveraged to further improve aspect identification. The experimental results show the effectiveness of our proposed method.

Supported by the NSFC (No. 61472183, 61672277, 61772261).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://alt.qcri.org/semeval2015/task12/.

  2. 2.

    https://www.yelp.com/dataset/challenge/.

References

  1. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL on Interactive Presentation Sessions, pp. 69–72. Association for Computational Linguistics (2006)

    Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  3. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of statistical machine translation: parameter estimation. Comput. Linguist. 19(2), 263–311 (1993)

    Google Scholar 

  4. Cruz, I., Gelbukh, A.F., Sidorov, G.: Implicit aspect indicator extraction for aspect based opinion mining. Int. J. Comput. Linguist. Appl. 5(2), 135–152 (2014)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: NRC-Canada-2014: detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442 (2014)

    Google Scholar 

  7. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)

    Google Scholar 

  8. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, pp. 746–751 (2013)

    Google Scholar 

  9. Och, F.J., Ney, H.: Giza++: training of statistical translation models (2000)

    Google Scholar 

  10. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. Association for Computational Linguistics, Denver (2015)

    Google Scholar 

  11. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35. Association for Computational Linguistics (2014)

    Google Scholar 

  12. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

    Article  Google Scholar 

  13. Ruder, S., Ghaffari, P., Breslin, J.G.: INSIGHT-1 at SemEval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. arXiv preprint arXiv:1609.02748 (2016)

  14. Saias, J.: Sentiue: target and aspect based sentiment analysis in SemEval-2015 task 12. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 767–771. Association for Computational Linguistics, Denver, June 2015

    Google Scholar 

  15. Severyn, A., Moschitti, A.: UNITN: training deep convolutional neural network for twitter sentiment classification. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 464–469 (2015)

    Google Scholar 

  16. Thet, T.T., Na, J.C., Khoo, C.S.: Aspect-based sentiment analysis of movie reviews on discussion boards. J. Inf. Sci. 36(6), 823–848 (2010)

    Article  Google Scholar 

  17. Toh, Z., Su, J.: NLANGP: supervised machine learning system for aspect category classification and opinion target extraction. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 496–501 (2015)

    Google Scholar 

  18. Toh, Z., Su, J.: NLANGP at SemEval-2016 task 5: improving aspect based sentiment analysis using neural network features. In: Proceedings of SemEval, pp. 282–288 (2016)

    Google Scholar 

  19. Xenos, D., Theodorakakos, P., Pavlopoulos, J., Malakasiotis, P., Androutsopoulos, I.: AUEB-ABSA at SemEval-2016 task 5: ensembles of classifiers and embeddings for aspect based sentiment analysis. In: International Workshop on Semantic Evaluation, pp. 312–317 (2016)

    Google Scholar 

  20. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  21. Zhang, Z., Nie, J.Y., Wang, H.: TJUdeM: a combination classifier for aspect category detection and sentiment polarity classification. In: SemEval-2015, p. 772 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yu Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ning, T., Wu, Z., Dai, XY., Huang, J., Huang, S., Chen, J. (2018). Improving Aspect Identification with Reviews Segmentation. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2018. Lecture Notes in Computer Science(), vol 11108. Springer, Cham. https://doi.org/10.1007/978-3-319-99495-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99495-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99494-9

  • Online ISBN: 978-3-319-99495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics