Skip to main content

Towards Empathetic Human-Robot Interactions

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2016)

Abstract

Since the late 1990s when speech companies began providing their customer-service software in the market, people have gotten used to speaking to machines. As people interact more often with voice and gesture controlled machines, they expect the machines to recognize different emotions, and understand other high level communication features such as humor, sarcasm and intention. In order to make such communication possible, the machines need an empathy module in them, which is a software system that can extract emotions from human speech and behavior and can decide the correct response of the robot. Although research on empathetic robots is still in the primary stage, current methods involve using signal processing techniques, sentiment analysis and machine learning algorithms to make robots that can ‘understand’ human emotion. Other aspects of human-robot interaction include facial expression and gesture recognition, as well as robot movement to convey emotion and intent. We propose Zara the Supergirl as a prototype system of empathetic robots. It is a software-based virtual android, with an animated cartoon character to present itself on the screen. She will get ‘smarter’ and more empathetic, by having machine learning algorithms, and gathering more data and learning from it. In this paper, we present our work so far in the areas of deep learning of emotion and sentiment recognition, as well as humor recognition. We hope to explore the future direction of android development and how it can help improve people’s lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://catalog.ldc.upenn.edu/LDC94S13A.

  2. 2.

    http://liwc.wpengine.com.

  3. 3.

    Extension of the text8 corpus, obtained from http://mattmahoney.net/dc/textdata.

  4. 4.

    From bigbangtrans.wordpress.com and http://www.livesinabox.com/friends/scripts.shtml.

References

  1. Attardo, S.: Linguistic Theories of Humor, vol. 1. Walter de Gruyter, Berlin (1994)

    Google Scholar 

  2. Attardo, S.: The semantic foundations of cognitive theories of humor. Humor-Int. J. Humor Res. 10(4), 395–420 (1997)

    Article  Google Scholar 

  3. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end attention-based large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)

    Google Scholar 

  4. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy), vol. 4, p. 3 (2010)

    Google Scholar 

  5. Bertero, D., Fung, P.: Deep learning of audio and language features for humor prediction. In: International Conference on Language Resources and Evaluation (LREC) (2016)

    Google Scholar 

  6. Bertero, D., Fung, P.: Predicting humor response in dialogues from TV sitcoms. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)

    Google Scholar 

  7. Bertero, D., Fung, P.: A long short-term memory framework for predicting humor in dialogues. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2016)

    Google Scholar 

  8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  10. Duffy, B.R., Joue, G.: Intelligent robots: the question of embodiment. In: Proceedings of the Brain-Machine Workshop (2000)

    Google Scholar 

  11. Esuli, A., Sebastiani, F.: SENTIWORDNET: a publicly available lexical resource for opinion mining. In: Proceedings of LREC, vol. 6, pp. 417–422 (2006)

    Google Scholar 

  12. Eyben, F., Wöllmer, M., Schuller, B.: openSMILE: the munich versatile and fast open-source audio feature extractor. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1459–1462. ACM (2010)

    Google Scholar 

  13. Han, K., Yu, D., Tashev, I.: Speech emotion recognition using deep neural network and extreme learning machine. In: INTERSPEECH, pp. 223–227 (2014)

    Google Scholar 

  14. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5353–5360 (2015)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (2015)

    Google Scholar 

  17. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (2014)

    Google Scholar 

  18. Kim, Y.: Conditional neural networks for sentence classification. In: EMNLP 2014 (2014)

    Google Scholar 

  19. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (2001)

    Google Scholar 

  20. Liscombe, J., Venditti, J., Hirschberg, J.B.: Classifying subject ratings of emotional speech using acoustic features. Columbia University Academic Commons (2003)

    Google Scholar 

  21. Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30, 457–500 (2007)

    MATH  Google Scholar 

  22. Mataric, M.J.: The role of embodiment in assistive interactive robotics for the elderly. In: AAAI Fall Symposium on Caring Machines: AI for the Elderly, Arlington, VA (2005)

    Google Scholar 

  23. Okazaki, N.: CRFsuite: a fast implementation of conditional random fields (CRFs) (2007). http://www.chokkan.org/software/crfsuite

  24. Polzehl, T., Möller, S., Metze, F.: Automatically assessing personality from speech. In: 2010 IEEE Fourth International Conference on Semantic Computing (ICSC), pp. 134–140. IEEE (2010)

    Google Scholar 

  25. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Silovsky, J.: The Kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding (No. EPFL-CONF-192584). IEEE Signal Processing Society (2011)

    Google Scholar 

  26. Purver, M.: The theory and use of clarification requests in dialogue. Unpublished Doctoral Dissertation, University of London (2004)

    Google Scholar 

  27. Rakov, R., Rosenberg, A.: “Sure, i did the right thing”: a system for sarcasm detection in speech. In: INTERSPEECH, pp. 842–846 (2013)

    Google Scholar 

  28. Řehůřek, R., Sojka, P.: Gensim–python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic (2011)

    Google Scholar 

  29. Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)

    Article  Google Scholar 

  30. Roth, S., Cohen, L.J.: Approach, avoidance, and coping with stress. Am. Psychol. 41(7), 813 (1986)

    Article  Google Scholar 

  31. Rousseau, A., Deléglise, P., Estève, Y.: Enhancing the TED-LIUM corpus with selected data for language modeling and more TED talks. In: LREC, pp. 3935–3939 (2014)

    Google Scholar 

  32. Sainath, T.N., Mohamed, A.R., Kingsbury, B., Ramabhadran, B.: Deep convolutional neural networks for LVCSR. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8614–8618. IEEE (2013)

    Google Scholar 

  33. Scaringella, N., Zoia, G., Mlynek, D.: Automatic genre classification of music content: a survey. IEEE Sig. Process. Mag. 23(2), 133–141 (2006)

    Article  Google Scholar 

  34. Schermerhorn, P., Scheutz, M.: Disentangling the effects of robot affect, embodiment, and autonomy on human team members in a mixed-initiative task. In: Proceedings from the International Conference on Advances in Computer-Human Interactions, pp. 236–241 (2011)

    Google Scholar 

  35. Schuller, B., Steidl, S., Batliner, A.: The INTERSPEECH 2009 emotion challenge. In: INTERSPEECH, vol. 2009, pp. 312–315 (2009)

    Google Scholar 

  36. Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C.A., Narayanan, S.S.: The INTERSPEECH 2010 paralinguistic challenge. In: INTERSPEECH, vol. 2010, pp. 2795–2798, September 2010

    Google Scholar 

  37. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Taylor, J., Mazlack, L.: Toward computational recognition of humorous intent. In: Proceedings of Cognitive Science Conference, pp. 2166–2171 (2005)

    Google Scholar 

  39. Wainer, J., Feil-Seifer, D.J., Shell, D.A., Matarić, M.J.: The role of physical embodiment in human-robot interaction. In: The 15th IEEE International Symposium on Robot and Human Interactive Communication, ROMAN 2006, pp. 117–122. IEEE (2006)

    Google Scholar 

  40. Wang, M., Manning, C.D.: Effect of non-linear deep architecture in sequence labeling. In: IJCNLP, pp. 1285–1291 (2013)

    Google Scholar 

  41. Wheeless, L.R., Grotz, J.: The measurement of trust and its relationship to self-disclosure. Hum. Commun. Res. 3(3), 250–257 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Fung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fung, P. et al. (2018). Towards Empathetic Human-Robot Interactions. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9624. Springer, Cham. https://doi.org/10.1007/978-3-319-75487-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75487-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75486-4

  • Online ISBN: 978-3-319-75487-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics