Abstract
With the popularity of cloud computing, there is an increasing demand for enforcing access control over outsourced files and performing versatile operations on encrypted data. To meet this demand, a novel primitive called predicate fully homomorphic encryption (PFHE) is introduced and modeled in this work, which can provide the security guarantee that neither cloud computing server nor invalid cloud users can acquire any extra information about the processed data, while the server can still process the data correctly. We give a generic construction for PFHE, from any predicate key encapsulation mechanism (PKEM) and any LWE-based multi-key fully homomorphic encryption (MFHE). Compared with previously proposed generic construction for attribute-based fully homomorphic encryption (ABFHE), which can naturally be extended to one for PFHE, our construction has advantages in both time for encryption and space for encrypted data storage. In addition, our construction can achieve CCA1-secure. Thus it directly implies approaches for CCA1-secure FHE, CCA1-secure PFHE and CCA1-secure MFHE. The latter two have not been touched in previous work. In addition, we give a conversion which results a CCA1-secure PFHE scheme from a CPA-secure one, drawing on the techniques for CCA2-secure PE schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13
Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_13
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)
Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8
Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_8
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Huang, X.: Cryptographic hierarchical access control for dynamic structures. IEEE Trans. Inf. Forensics Secur. 11(10), 2349–2364 (2016)
Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Li, J., Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics Secur. 11(4), 850–865 (2016)
Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396 (2014)
Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554 (2013)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS, pp. 89–98 (2006)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-effective authentic and anonymous data sharing with forward security. IEEE Trans. Comput. 64(4), 971–983 (2015)
Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. In: FOCS, pp. 189–197 (2000)
Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9
Liu, J.K., Au, M.H., Huang, X., Lu, R., Li, J.: Fine-grained two-factor access control for web-based cloud computing services. IEEE Trans. Inf. Forensics Secur. 11(3), 484–497 (2016)
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26
Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)
Shaltiel, R.: An introduction to randomness extractors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 21–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_2
Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4
Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Farrà s, O., Manjón, J.A.: Contributory broadcast encryption with efficient encryption and short ciphertexts. IEEE Trans. Comput. 65(2), 466–479 (2016)
Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_15
Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient revocation in cloud storage systems. In: ASIACCS, pp. 523–528 (2013)
Acknowledgment
Qianhong Wu is the corresponding author. This paper is supported by the National Key Research and Development Program of China through project 2017YFB0802505, the Natural Science Foundation of China through projects 61772538, 61672083, 61370190, 61532021, 61472429 and 61402029, and by the National Cryptography Development Fund through project MMJJ20170106.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Feng, H., Liu, J., Wu, Q., Liu, W. (2018). Predicate Fully Homomorphic Encryption: Achieving Fine-Grained Access Control over Manipulable Ciphertext. In: Chen, X., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2017. Lecture Notes in Computer Science(), vol 10726. Springer, Cham. https://doi.org/10.1007/978-3-319-75160-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-75160-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75159-7
Online ISBN: 978-3-319-75160-3
eBook Packages: Computer ScienceComputer Science (R0)