Abstract
A natural way of attacking a new, computationally challenging problem is to find a novel way of combining design elements introduced in existing algorithms. For example, this approach was made systematic in SATenstein [15], a highly parameterized stochastic local search (SLS) framework for SAT that unifies techniques across a wide range of well-known SLS solvers. The focus of such work so far has been on building frameworks and identifying high-performing configurations. Here, we focus on analyzing such frameworks, a problem that currently requires considerable manual effort and domain expertise. We propose a quantitative alternative: a new metric that measures the similarity between a new configuration and previously known algorithm designs. We first introduce concept DAGs, a data structure that preserves the hierarchical structure of configurations induced by conditional parameter dependencies. We then quantify the degree of similarity between two configurations as the transformation cost between the respective concept DAGs. In the context of analyzing SATenstein configurations, we demonstrate that visualizations based on transformation costs can provide useful insights into the similarities and differences between existing SLS-based SAT solvers and novel solver configurations.
Lin Xu and Ashiqur R. KhudaBukhsh contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2_15
Cox, T.F., Cox, M.A.: Multidimensional scaling. CRC Press, Boca Raton (2000)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5
Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. J. Heuristics 22, 1–28 (2013)
Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: combining structure and randomness. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999), pp. 654–660 (1999)
Gomes, C.P., Selman, B.: Problem structure in the presence of perturbations. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp. 221–226 (1997)
Hirsch, E.A.: Random generator hgen2 of satisfiable formulas in 3-CNF (2002). http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2-1.01.tar.gz. Accessed 18 December 2015
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), pp. 655–660 (2002)
Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36(1), 267–306 (2009)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_16
Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st International Conference on Machine Learning (ICML 2014), pp. 754–762 (2014)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance specific algorithm configuration. Eur. Conf. Artif. Intell. (ECAI) 2010, 751–756 (2010)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 517–524 (2009)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: automatically building local search sat solvers from components. Artif. Intell. 232, 20–42 (2016)
Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005). doi:10.1007/11499107_12
Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT (2007). Solver description, SAT competition 2007
Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_15
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 608–614. AAAI Press (2013)
Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_31
Pham, D.N., Anbulagan, A.: Resolution enhanced SLS solver: R+AdaptNovelty+ (2007). Solver description, SAT competition 2007
Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for satisfiability. J. Satisf. Boolean Model. Comput. (JSAT) 4, 149–172 (2008)
Prestwich, S.: Random walk with continuously smoothed variable weights. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer, Heidelberg (2005). doi:10.1007/11499107_15
Simon, L.: SAT competition random 3CNF generator (2002). www.satcompetition.org/2003/TOOLBOX/genAlea.c. Accessed 18 December 2015
Sinz, C.: Visualizing the internal structure of sat instances (preliminary report). In: SAT. Citeseer (2004)
Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for SAT. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI 2004), pp. 191–196 (2004)
Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: new variable selection heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0_24
Uchida, T., Watanabe, O.: Hard SAT instance generation based on the factorization problem (1999). http://www.is.titech.ac.jp/~watanabe/gensat/a2/GenAll.tar.gz
Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification, and diversification in local search for sat. J. Satisf. Boolean Model. Comput. 4, 219–237 (2008)
Xue, Y., Wang, C., Ghenniwa, H., Shen, W.: A tree similarity measuring method and its application to ontology. J. Univ. Comput. Sci. 15(9), 1766–1781 (2001)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Xu, L., KhudaBukhsh, A.R., Hoos, H.H., Leyton-Brown, K. (2016). Quantifying the Similarity of Algorithm Configurations. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-50349-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50348-6
Online ISBN: 978-3-319-50349-3
eBook Packages: Computer ScienceComputer Science (R0)