Skip to main content

Quantifying the Similarity of Algorithm Configurations

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10079))

Included in the following conference series:

Abstract

A natural way of attacking a new, computationally challenging problem is to find a novel way of combining design elements introduced in existing algorithms. For example, this approach was made systematic in SATenstein [15], a highly parameterized stochastic local search (SLS) framework for SAT that unifies techniques across a wide range of well-known SLS solvers. The focus of such work so far has been on building frameworks and identifying high-performing configurations. Here, we focus on analyzing such frameworks, a problem that currently requires considerable manual effort and domain expertise. We propose a quantitative alternative: a new metric that measures the similarity between a new configuration and previously known algorithm designs. We first introduce concept DAGs, a data structure that preserves the hierarchical structure of configurations induced by conditional parameter dependencies. We then quantify the degree of similarity between two configurations as the transformation cost between the respective concept DAGs. In the context of analyzing SATenstein configurations, we demonstrate that visualizations based on transformation costs can provide useful insights into the similarities and differences between existing SLS-based SAT solvers and novel solver configurations.

Lin Xu and Ashiqur R. KhudaBukhsh contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2_15

    Chapter  Google Scholar 

  2. Cox, T.F., Cox, M.A.: Multidimensional scaling. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  3. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5

    Chapter  Google Scholar 

  4. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. J. Heuristics 22, 1–28 (2013)

    Google Scholar 

  5. Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: combining structure and randomness. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999), pp. 654–660 (1999)

    Google Scholar 

  6. Gomes, C.P., Selman, B.: Problem structure in the presence of perturbations. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp. 221–226 (1997)

    Google Scholar 

  7. Hirsch, E.A.: Random generator hgen2 of satisfiable formulas in 3-CNF (2002). http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2-1.01.tar.gz. Accessed 18 December 2015

  8. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), pp. 655–660 (2002)

    Google Scholar 

  9. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36(1), 267–306 (2009)

    MATH  Google Scholar 

  12. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_16

    Chapter  Google Scholar 

  13. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st International Conference on Machine Learning (ICML 2014), pp. 754–762 (2014)

    Google Scholar 

  14. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance specific algorithm configuration. Eur. Conf. Artif. Intell. (ECAI) 2010, 751–756 (2010)

    Google Scholar 

  15. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automatically building local search SAT solvers from components. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 517–524 (2009)

    Google Scholar 

  16. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: Satenstein: automatically building local search sat solvers from components. Artif. Intell. 232, 20–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005). doi:10.1007/11499107_12

    Chapter  Google Scholar 

  18. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT (2007). Solver description, SAT competition 2007

    Google Scholar 

  19. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_15

    Chapter  Google Scholar 

  20. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 608–614. AAAI Press (2013)

    Google Scholar 

  21. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_31

    Chapter  Google Scholar 

  22. Pham, D.N., Anbulagan, A.: Resolution enhanced SLS solver: R+AdaptNovelty+ (2007). Solver description, SAT competition 2007

    Google Scholar 

  23. Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for satisfiability. J. Satisf. Boolean Model. Comput. (JSAT) 4, 149–172 (2008)

    MATH  Google Scholar 

  24. Prestwich, S.: Random walk with continuously smoothed variable weights. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer, Heidelberg (2005). doi:10.1007/11499107_15

    Chapter  Google Scholar 

  25. Simon, L.: SAT competition random 3CNF generator (2002). www.satcompetition.org/2003/TOOLBOX/genAlea.c. Accessed 18 December 2015

  26. Sinz, C.: Visualizing the internal structure of sat instances (preliminary report). In: SAT. Citeseer (2004)

    Google Scholar 

  27. Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for SAT. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI 2004), pp. 191–196 (2004)

    Google Scholar 

  28. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: new variable selection heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0_24

    Chapter  Google Scholar 

  29. Uchida, T., Watanabe, O.: Hard SAT instance generation based on the factorization problem (1999). http://www.is.titech.ac.jp/~watanabe/gensat/a2/GenAll.tar.gz

  30. Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification, and diversification in local search for sat. J. Satisf. Boolean Model. Comput. 4, 219–237 (2008)

    MATH  Google Scholar 

  31. Xue, Y., Wang, C., Ghenniwa, H., Shen, W.: A tree similarity measuring method and its application to ontology. J. Univ. Comput. Sci. 15(9), 1766–1781 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger H. Hoos or Kevin Leyton-Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Xu, L., KhudaBukhsh, A.R., Hoos, H.H., Leyton-Brown, K. (2016). Quantifying the Similarity of Algorithm Configurations. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50349-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50348-6

  • Online ISBN: 978-3-319-50349-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics