Skip to main content

Improving Dependency Parsing on Clinical Text with Syntactic Clusters from Web Text

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9947))

Included in the following conference series:

Abstract

Treebanks for clinical text are not enough for supervised dependency parsing no matter in their scale or diversity, leading to still unsatisfactory performance. Many unlabeled text from web can make up for the scarceness of treebanks in some extent. In this paper, we propose to gain syntactic knowledge from web text as syntactic cluster features to improve dependency parsing on clinical text. We parse the web text and compute the distributed representation of each words base on their contexts in dependency trees. Then we cluster words according to their distributed representation, and use these syntactic cluster features to solve the data sparseness problem. Experiments on Genia show that syntactic cluster features improve the LAS (Labled Attachment Score) of dependency parser on clinical text by 1.62 %. And when we use syntactic clusters combining with brown clusters, the performance gains by 1.93 % on LAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://code.google.com/p/word2vec/.

References

  1. Bansal, M., Gimpel, K., Livescu, K.: Tailoring continuous word representations for dependency parsing. In: Proceedings of the ACL 2014, pp. 809–815 (2014)

    Google Scholar 

  2. Dredze, M., Blitzer, J., Talukdar, P.P., Ganchev, K., Graca, J.a., Pereira, F.: Frustratingly hard domain adaptation for dependency parsing. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1051–1055 (2007)

    Google Scholar 

  3. Firth, J.: A Synopsis of Linguistic Theory 1930–1955. Studies in Linguistic Analysis, pp. 1–32 (1957)

    Google Scholar 

  4. Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)

    Article  Google Scholar 

  5. Hogenhout, W.R., Matsumoto, Y., Fast, J.S.W.: A preliminary study of word clustering based on syntactic behavior. In: Proceedings of the Computational Natural Language Learning, pp. 16–24 (1997)

    Google Scholar 

  6. Kim, J.D., Ohta, T., Tateisi, Y., Tsujii, J.: Genia corpus-semantically annotated corpus for bio-textmining. Bioinformatics 19(Suppl 1), i180–i182 (2003)

    Article  Google Scholar 

  7. Koo, T., Carreras, X., Collins, M.: Simple semi-supervised dependency parsing. In: Proceedings of ACL-08: HLT, pp. 595–603 (2008)

    Google Scholar 

  8. Levy, O., Goldberg, Y.: Dependency-based word embeddings. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 302–308 (2014)

    Google Scholar 

  9. Ma, X., Xia, F.: Dependency parser adaptation with subtrees from auto-parsed target domain data. In: Proceedings of the 51st Annual Meeting of the ACL, pp. 585–590 (2013)

    Google Scholar 

  10. McClosky, D., Charniak, E.: Self-training for biomedical parsing. In: Proceedings of ACL-08: HLT, Short Papers, pp. 101–104 (2008)

    Google Scholar 

  11. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on ACL 2005, pp. 91–98 (2005)

    Google Scholar 

  12. Mcdonald, R., Pereira, F.: Online learning of approximate dependency parsing algorithms. In: Proceedings of EACL, pp. 81–88 (2006)

    Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google Scholar 

  14. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. CoRR abs/1309.4168 (2013)

    Google Scholar 

  15. Ng, D., Bansal, M., Curran, J.R.: Web-scale surface and syntactic n-gram features for dependency parsing. CoRR abs/1502.07038 (2015)

    Google Scholar 

  16. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryiğit, G., Kübler, S., Marinov, S., Marsi, E.: MaltParser: a language-independent system for data-driven dependency parsing. Nat. Lang. Eng. 13(2), 95–135 (2007)

    Google Scholar 

  17. Plank, B., van Noord, G.: Effective measures of domain similarity for parsing. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1566–1576 (2011)

    Google Scholar 

  18. Sagae, K., Gordon, A.S.: Clustering words by syntactic similarity improves dependency parsing of predicate-argument structures. In: Proceedings of the 11th International Conference on Parsing Technologies, pp. 192–201 (2009)

    Google Scholar 

  19. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web WWW 2010, pp. 1177–1178. ACM (2010)

    Google Scholar 

  20. Zhang, C., Zhao, T.: Bilingual lexicon extraction with forced correlation from comparable corpora. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 528–535. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26535-3_60

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the by the project of National Natural Science Foundation of China (No. 91520204, No. 61572154) and the project of National High Technology Research and Development Program of China (863 Program) (No. 2015AA015405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Qiao, X., Cao, H., Zhao, T., Chen, K. (2016). Improving Dependency Parsing on Clinical Text with Syntactic Clusters from Web Text. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9947. Springer, Cham. https://doi.org/10.1007/978-3-319-46687-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46687-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46686-6

  • Online ISBN: 978-3-319-46687-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics